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Zero-Resource Speech Processing

Popular methods for speech processing rely on transcribed speech.

Obtaining transcriptions is expensive and not always possible.
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Tasks in Zero-Resource Processing

We don’t always need to predict text labels:

• Query-by-Example Search: search speech using speech.

• Unsupervised Term Discovery: Discover repeating patterns in
speech.
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Speech Segment Comparison

These tasks require comparing speech segments.

The conventional method is Dynamic Time Warping.

• Computationally expensive.
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Acoustic Word Embeddings

We want to map speech to these representation without using labels.
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Speaker and Gender Information

Acoustic properties of speech from different speakers/genders differ.

Speaker BSpeaker A

cat cat bat

MaleFemale

pan punpan

Male

We want embeddings to be robust.
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Speaker/Gender Conditioning
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Adversarial Training
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Speaker/Gender Classifier

z p

Linear ReLU Dropout Softmax
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Evaluating Quality of AWEs

Use the same-different task to evaluate AWEs:

• Measure if AWEs are similar given a threshold.

• Calculate area under Precision vs Recall curve.
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Results
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Evaluate Speaker and Gender Predictability

Analyse if the speaker and gender information has decreased:

• Use speaker/gender classifier model.

• Evaluate accuracy.
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Average Precision vs Speaker/Gender Predictability
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Conclusions

• English data shows marginal improvement by incorporating
speaker information.

• Best Xitsonga model shows 22% improvement.

• It’s difficult to remove speaker and gender information.

• Future work ...
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