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Speech comparison: cosine distance between two word representations
Image comparison: cosine distance between two image representations
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» Unsupervised Learning

Autoencoder-like model architectures:
. Autoencoder (AE)
. Correspondence autoencoder (CAE) (unsupervised within-modality pairs).
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» K -shot Multimodal Speech and Image
Matching

Model 11-way accuracy (%)
one-shot five-shot

Baseline DTW + Pixels 31.80 41.88

Transfer learning
models

Classifier 56.80 ± 1.19 59.67 ± 1.73
Siamese 54.83 ± 1.80 59.25 ± 0.79
CAE 46.60 ± 0.69 53.82 ± 1.07

Unsupervised
models

AE 28.99 ± 0.84 38.68 ± 1.51
CAE 42.75 ± 0.62 52.15 ± 0.69
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. CAE with classifier pairs: Train an unsupervised CAE using these
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» Conclusions

. Transfer learning outperforms unsupervised learning.

. Unsupervised learning can be improved by using transfer learning.

. Idealised experiments show the promise of unsupervised learning.
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