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Multimodal one-shot learning: learn from one cross-modal paired example.
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Multimodal few-shot learning: learn from a few cross-modal paired examples.
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Suppprt set Matching set
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Speech comparison: cosine distance between two word representations
Image comparison: cosine distance between two image representations
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> UNSUPERVISED LEARNING

> Trained on unlabelled in-domain data.

> Unlabelled in-domain data: TIDigits and MNIST
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> UNSUPERVISED LEARNING

Autoencoder-like model architectures:
> Autoencoder (AE)

> Correspondence autoencoder (CAE) (unsupervised within-modality pairs).
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> Trained on labelled background data.

> Labelled background data: Buckeye and Omniglot.
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> A transfer learned variant of the unsupervised CAE:

> Trained on ground truth pairs.
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Multimodal few-shot models from Eloff et al. [1]:

> Classifiers and

> Siamese Triplet networks.
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> CouLbd UNSUPERVISED AND TRANSFER LEARNING
BE COMPLEMENTARY?

> Classifier pairs: We find unsupervised training pairs using transfer
learned classifiers.

> CAE with classifier pairs: Train an unsupervised CAE using these
classfier pairs.

> Transfer learning + CAE fine-tuning: Pretrain a CAE on ground truth
background pairs and then train the CAE on these classifier pairs.
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> CONCLUSIONS

> Transfer learning outperforms unsupervised learning.
> Unsupervised learning can be improved by using transfer learning.

> |dealised experiments show the promise of unsupervised learning.
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