Unsupervised vs. Transfer Learning for Multimodal One-Shot Matching of Speech and Images

INTERSPEECH 2020

authors

Leanne Nortje [nortjeleanne@gmail.com]

Herman Kamper [kamperh@sun.ac.za]

institute

E&E Engineering, Stellenbosch University, South Africa

▷ Vision/speech processing systems require large amounts of labelled data.

- ▷ Vision/speech processing systems require large amounts of labelled data.
- ▷ Where to find a solution

- ▷ Vision/speech processing systems require large amounts of labelled data.
- ▷ Where to find a solution: Children learn from few examples.

- ▷ Vision/speech processing systems require large amounts of labelled data.
- ▷ Where to find a solution: Children learn from few examples.

words \iff visual objects

"cookie"

"broccoli"

Which picture is that of an "ice-cream"?

Which picture is that of an "ice-cream"?

Multimodal one-shot learning: learn from one cross-modal paired example

Multimodal one-shot learning: learn from one cross-modal paired example.

 \Downarrow

Multimodal few-shot learning: learn from a few cross-modal paired examples.

Our approach: a support set + two unimodal comparisons

Our approach: a support set + two unimodal comparisons

Our approach: a support set + two unimodal comparisons

Speech comparison: cosine distance between two word representations **Image comparison:** cosine distance between two image representations

▷ Trained on unlabelled in-domain data.

- ▷ Trained on unlabelled in-domain data.
- ▷ Unlabelled in-domain data: TIDigits

- ▷ Trained on unlabelled in-domain data.
- ▷ Unlabelled in-domain data: TIDigits and MNIST

Autoencoder-like model architectures:

Autoencoder-like model architectures:

▷ Autoencoder (AE)

Autoencoder-like model architectures:

- ▷ Autoencoder (AE)
- ▷ Correspondence autoencoder (CAE)

Autoencoder-like model architectures:

- ▷ Autoencoder (AE)
- ▷ Correspondence autoencoder (CAE) (unsupervised within-modality pairs).

▷ Trained on labelled background data.

- ▷ Trained on labelled background data.
- ▷ Labelled background data: Buckeye

- ▷ Trained on labelled background data.
- ▷ Labelled background data: Buckeye and Omniglot.

▷ A transfer learned variant of the unsupervised CAE:

- ▷ A transfer learned variant of the unsupervised CAE:
- ▷ Trained on ground truth pairs.

Multimodal few-shot models from Eloff et al. [1]:

Multimodal few-shot models from Eloff et al. [1]:

▷ Classifiers

Multimodal few-shot models from Eloff et al. [1]:

- ▷ Classifiers and
- ▷ Siamese Triplet networks.

$\ast~$ K-shot Multimodal Speech and Image Matching

	Model		11-way aco one-shot	curacy (%) five-shot
Baseline		DTW + Pixels	31.80	41.88
Transfer learning models		<mark>Classifier</mark> Siamese CAE	$\begin{array}{l} \textbf{56.80} \pm \textbf{1.19} \\ \textbf{54.83} \pm \textbf{1.80} \\ \textbf{46.60} \pm \textbf{0.69} \end{array}$	$\begin{array}{r} \textbf{59.67} \pm \textbf{1.73} \\ 59.25 \pm \textbf{0.79} \\ 53.82 \pm \textbf{1.07} \end{array}$
Unsupervised models		AE CAE	$\begin{array}{r} 28.99 \pm 0.84 \\ 42.75 \pm 0.62 \end{array}$	38.68 ± 1.51 52.15 ± 0.69

$\ast~$ K-shot Multimodal Speech and Image Matching

	Model		11-way aco one-shot	curacy (%) five-shot
Baseline		DTW + Pixels	31.80	41.88
Transfer learning models		Classifier Siamese CAE	$\begin{array}{l} 56.80 \pm 1.19 \\ 54.83 \pm 1.80 \\ \textbf{46.60} \pm \textbf{0.69} \end{array}$	$\begin{array}{r} {\color{red} 59.67 \pm 1.73} \\ {\color{red} 59.25 \pm 0.79} \\ {\color{red} 53.82 \pm 1.07} \end{array}$
Unsupervised models		AE CAE	$\begin{array}{r} 28.99 \pm 0.84 \\ 42.75 \pm 0.62 \end{array}$	38.68 ± 1.51 52.15 ± 0.69

$\ast~$ K-shot Multimodal Speech and Image Matching

	Model		11-way ac one-shot	curacy (%) five-shot
Baseline		DTW + Pixels	31.80	41.88
Transfer learning models		Classifier Siamese CAE	$\begin{array}{l} \textbf{56.80} \pm \textbf{1.19} \\ \textbf{54.83} \pm \textbf{1.80} \\ \textbf{46.60} \pm \textbf{0.69} \end{array}$	$\begin{array}{r} {\color{red} 59.67 \pm 1.73} \\ {\color{red} 59.25 \pm 0.79} \\ {\color{red} 53.82 \pm 1.07} \end{array}$
Unsupervised models		AE CAE	$\begin{array}{r} 28.99 \pm 0.84 \\ \textbf{42.75} \pm \textbf{0.62} \end{array}$	38.68 ± 1.51 52.15 ± 0.69

▷ Classifier pairs: We find unsupervised training pairs using transfer learned classifiers.

- Classifier pairs: We find unsupervised training pairs using transfer learned classifiers.
- ▷ CAE with classifier pairs: Train an unsupervised CAE using these classifier pairs.

- Classifier pairs: We find unsupervised training pairs using transfer learned classifiers.
- ▷ CAE with classifier pairs: Train an unsupervised CAE using these classifier pairs.
- ▷ **Transfer learning + CAE fine-tuning**: Pretrain a CAE on ground truth background pairs and then train the CAE on these classifier pairs.

Model	11-way ac one-shot	curacy (%) five-shot
Baseline: DTW + Pixels	31.80	41.88
Transfer learning: Classifier	56.80 ± 1.19	59.67 ± 1.73
CAE with cosine pairs CAE with classifier pairs Transfer learning + CAE fine-tuning	$\begin{array}{l} 42.75 \pm 0.62 \\ 48.66 \pm 1.14 \\ 54.32 \pm 2.19 \end{array}$	$\begin{array}{l} 52.15 \pm 0.69 \\ 55.59 \pm 0.71 \\ 59.37 \pm 1.80 \end{array}$
CAE with oracle pairs	89.19 ± 0.69	92.81 ± 0.47

Model	11-way acc one-shot	curacy (%) five-shot
Baseline: DTW + Pixels	31.80	41.88
Transfer learning: Classifier	56.80 ± 1.19	59.67 ± 1.73
CAE with cosine pairs CAE with classifier pairs Transfer learning + CAE fine-tuning	$\begin{array}{r} 42.75 \pm 0.62 \\ \textbf{48.66} \pm \textbf{1.14} \\ 54.32 \pm 2.19 \end{array}$	$\begin{array}{r} 52.15 \pm 0.69 \\ \textbf{55.59} \pm \textbf{0.71} \\ 59.37 \pm 1.80 \end{array}$
CAE with oracle pairs	89.19 ± 0.69	92.81 ± 0.47

Model	11-way ac one-shot	curacy (%) five-shot
Baseline: DTW + Pixels	31.80	41.88
Transfer learning: Classifier	56.80 ± 1.19	59.67 ± 1.73
CAE with cosine pairs CAE with classifier pairs Transfer learning + CAE fine-tuning	$\begin{array}{r} 42.75 \pm 0.62 \\ 48.66 \pm 1.14 \\ \textbf{54.32} \pm \textbf{2.19} \end{array}$	$\begin{array}{r} 52.15 \pm 0.69 \\ 55.59 \pm 0.71 \\ \textbf{59.37} \pm \textbf{1.80} \end{array}$
CAE with oracle pairs	89.19 ± 0.69	92.81 ± 0.47

Model	11-way ac one-shot	curacy (%) five-shot
Baseline: DTW + Pixels	31.80	41.88
Transfer learning: Classifier	56.80 ± 1.19	59.67 ± 1.73
CAE with cosine pairs CAE with classifier pairs Transfer learning + CAE fine-tuning	$\begin{array}{r} 42.75 \pm 0.62 \\ 48.66 \pm 1.14 \\ 54.32 \pm 2.19 \end{array}$	$\begin{array}{l} 52.15 \pm 0.69 \\ 55.59 \pm 0.71 \\ 59.37 \pm 1.80 \end{array}$
CAE with oracle pairs	89.19 ± 0.69	92.81 ± 0.47

$\ \ > \ \ Conclusions$

» Conclusions

▷ Transfer learning outperforms unsupervised learning.

» Conclusions

- ▷ Transfer learning outperforms unsupervised learning.
- ▷ Unsupervised learning can be improved by using transfer learning.

» Conclusions

- ▷ Transfer learning outperforms unsupervised learning.
- ▷ Unsupervised learning can be improved by using transfer learning.
- ▷ Idealised experiments show the promise of unsupervised learning.

» **References**

[1] R. Eloff, H. A. Engelbrecht, and H. Kamper, "Multimodal one-shot learning of speech and images," in *Proc. ICCASP*, 2019.

» Acknowledgements

This work is supported in part by the National Research Foundation of South Africa (grant number: 120409), a Google Faculty Award for Herman Kamper, a DST CSIR scholarship for Leanne Nortje, and funding from Saigen.