Analyzing Autoencoder-based Acoustic Word Embeddings

Yevgen Matusevych ¹ Herman Kamper ² Sharon Goldwater ¹

¹ University of Edinburgh, UK ² Stellenbosch University, South Africa

Acoustic word embeddings

Do these embeddings have properties similar to those observed in human speakers?

Matusevych, Kamper, Goldwater. Analyzing autoencoder-based acoustic word embeddings.

Correspondence-autoencoding recurrent neural network

Probing the embedding space

Linear regression: Predict number of phones

Linear regression: Predict number of phones

A cognitive word onset bias: First phone is more prominent

Conclusion

- Acoustic embeddings show some promise for cognitive science.
- Spoken words of variable duration are embedded into the same space that is easy to probe.
- They can provide a link between speech processing and lexical access.