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Acoustic word embeddings

Do these embeddings have

. pear

properties similar to those

observed in human speakers?
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Probing the embedding space
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Linear regression: Predict number of phones
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Linear regression: Predict number of phones
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A cognitive word onset bias: First phone is more prominent
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Conclusion

e Acoustic embeddings show some promise for cognitive science.

e Spoken words of variable duration are embedded into the same space that is
easy to probe.

e They can provide a link between speech processing and lexical access.
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