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e Google Voice: English, Spanish, German, ..., Zulu (~50 languages)
e Data: 2000 hours transcribed speech audio; ~350M/560M words text

e Can we do this for all 7000 languages spoken in the world?
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Learning from raw speech with no or weak labels
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Learning from raw speech with no or weak labels

Unsupervised, or zero-resource, speech processing:

e What can we learn directly from
raw speech?
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e Unsupervised representation learning:

e Query-by-example search
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e Unsupervised segmentation and clustering (word discovery)
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Learning from raw speech with no or weak labels

Unsupervised, or zero-resource, speech processing:

e What can we learn directly from
I - }- ==

e Unsupervised representation learning: fal)

i
o Query-by-example search “w || WM‘ W‘W ”‘”’“‘WW WWWWW

e Unsupervised segmentation and clustering (word discovery)

Learning from weak (distant) labels:

e What can we learn from speech paired with another modality?

e E.g. translations or images
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Why learn with no or weak labels?

e Criticism: You always have some labelled data
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Why learn with no or weak labels?

Criticism: You always have some labelled data, but. ..
Get insight into human language acquisition [Risinen and Rasilo, '15]
Language acquisition in robots [Roy, '99]; [Renkens and Van hamme, '15]

Analysis of audio for unwritten languages [Besacier et al., '14]
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Why learn with no or weak labels?

Criticism: You always have some labelled data, but. ..

Get insight into human language acquisition [Risinen and Rasilo, '15]
Language acquisition in robots [Roy, '99]; [Renkens and Van hamme, '15]
Analysis of audio for unwritten languages [Besacier et al., '14]

New insights and models for speech processing
[Jansen et al., '13]

3/38



Example: Query-by-example search

i —
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[Jansen and Van Durme, I1S'12]
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Example: Query-by-example search

A

Spoken query:

i

Useful speech system, not requiring any transcribed speech

[Jansen and Van Durme, I1S'12]
4 /38



Learning from unlabelled speech with
and without visual cues
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Learning from unlabelled speech with
and without visual cues

Talk outline:

1. Unsupervised segmentation and clustering of speech (without)
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Learning from unlabelled speech with
and without visual cues

Talk outline:

1. Unsupervised segmentation and clustering of speech (without)

2. Using images to visually ground untranscribed speech (with)
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Unsupervised segmentation and clustering:

Segmental Bayesian Speech Model



Unsupervised segmentation and clustering:

Segmental Bayesian Speech Model

Aren Jansen Sharon Goldwater



Full-coverage segmentation and clustering
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Full-coverage segmentation and clustering
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Bayesian models for full-coverage segmentation

Previous models use explicit subword discovery directly on speech
features, e.g. [Lee et al.,, TACL'15]:
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Bayesian models for full-coverage segmentation

Previous models use explicit subword discovery directly on speech

features, e.g. [Lee et al.,, TACL'15]:

(sl 39]) ([1531 4721 [18 3] 36 491 [2567]) d; (i) syllabic and
lexical structures

IIIIEHIIEIHE 7] u () Oerphonedike

i (iii) edit operations

@@@@'.@ ...@‘ V (iv) b.ottom.-]ayer phone-

like units
| | | 7 (v) phone-like unit

|\“'|||H\|‘|\|"M||H\|'\H||\||||\\u||\||||*||\|]“\|||\\ poundrics

Our approach uses whole-word segmental representations,
i.e. acoustic word embeddings [Kamper et al., TASLP'16]

S

Xi (vi) observed speech data
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Acoustic word embeddings
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Y,

Acoustic word embeddings

Acoustic word embeddings x € R”
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Acoustic word embeddings

Acoustic word embeddings x € R”

Y,

Dynamic programming alignment has quadratic complexity, while
embedding comparison is linear time. Can use standard clustering.
9/38



Unsupervised segmental Bayesian model

Speech waveform WWMWMMMWMWMMWW»N
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Unsupervised segmental Bayesian model

Bayesian Gaussian mixture model

Acoustic frames y.,,

Speech waveform
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Unsupervised segmental Bayesian model

Bayesian Gaussian mixture model

Acoustic modelling

T
Acoustic frames y.,, :| H H H
Speech waveform WWMMWMWWM
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Unsupervised segmental Bayesian model

Bayesian Gaussian mixture model

Acoustic modelling

Word segmentation

t

T
Acoustic frames y.,, :| H H H
Speech waveform WWMMWMWWM
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Acoustic word embeddings: Downsampling

|

flatten

] —» [

] —» [
] —» [

] —» [

fa()

] —» [

=

> fe(*)

e Simple embedding approach also
used in other studies
e.g. [Abdel-Hamid et al., 2013]

e Downsampling is simple, but
actually hard to beat (unsupervised)

e Ongoing work, e.g.,

[Levin et al., ASRU'13]; [Kamper et al.,
ICASSP'16]; [Settle and Livescu, SLT'16]
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Evaluation

Ground truth yeah alel ! e mean Word-level

alignment |‘ —| ! T Vl

Unsupervised | _L
prediction ' Cluster 931 - Cluster 477

*  Cluster-level
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Evaluation

Ground truth yeah ! i e mean » Word-level
alignment | |

Unsupervised | |
prediction Cluster 931 Cluster 477

*  Cluster-level

Metrics:
e Unsupervised word error rate (WER)
e Word token precision, recall, F'-score
e Word type precision, recall, F-score

e Word boundary precision, recall, F-score
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Small-vocabulary segmentation and clustering
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Small-vocabulary segmentation and clustering

Discrete HMM: [Walter et al., ASRU'13]. BayesSeg: [Kamper et al., TASLP'16]. 13/38



Small-vocabulary segmentation and clustering

one [l

two - .

three
four -
five -
SiX

seven

Ground truth type

eight +
nine -
oh

ZEero

“n

"n

m

[Kamper et al., TASLP'16]

33 12 47 60 66 27 83 51 92

Cluster ID

38 63 14 89 24 85
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Large-vocabulary: English

70

ZRSBaselineUTD (SI)
UTDGraphCC (SI)
SyllableSegOsc™ (SD)
BayesSegMinDur-MFCC (SD)
BayesSegMinDur-cAE (SI)

60

50 H

F-score (%)

N o S
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ZRSBaselineUTD: [Versteegh et al., 1S'15]. UTDGraphCC: [Lyzinski et al., IS'15].

SyllableSegOsc™: [Rasinen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16]. 15 /38



Large-vocabulary: Xitsonga
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Bl ZRSBaselineUTD (SI)
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ZRSBaselineUTD: [Versteegh et al., 1S'15]. UTDGraphCC: [Lyzinski et al., IS'15].

SyllableSegOsc™: [Rasinen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16]. 1638



Listen to discovered clusters

Data for small-vocabulary experiments:
Small-vocabulary cluster 45:
Large-vocabulary English cluster 1214:

Large-vocabulary Xitsonga cluster 629:
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The true (less rosy) picture

Word embedding from cluster 33 (— one)

Embeddings close to the above (non-word segments)

Embedding dimensions

[Levin et al., ASRU'13]; [Kamper et al., ICASSP’'16]; [Settle and Livescu, SLT'16]
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Using visual cues to learn from untranscribed speech:

Visually Grounded Keyword Prediction



Using visual cues to learn from untranscribed speech:

Visually Grounded Keyword Prediction

Shane Settle Greg Shakhnarovich Karen Livescu
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Using images for grounding language
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Using images for grounding language

e Image captioning: Generate written natural language description of a
given image [Vinyals et al., CVPR'15]

e Grounding written language using images [Bernardi et al., JAIR'16]
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Using images for grounding language

e Image captioning: Generate written natural language description of a
given image [Vinyals et al., CVPR'15]

e Grounding written language using images [Bernardi et al., JAIR'16]

e We consider images paired with unlabellel spoken captions:

RN
ARALT
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Map images and speech into common space
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Map images and speech into common space

distance
yvls yspch
N N

conv. max feedfwd

max

[Harwath et al., NIPS'16]
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Retrieval in common (semantic) space

y € RP in D-dimensional space

[Harwath et al., NIPS'16]
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Can we use superwsed) vision model to get labels?

distance
yv1s yspch _
N N

conv  max feedfwd

[

max

Cannot obtain textual labels for the speech using this model
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Word prediction from images and speech
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Word prediction from images and speech
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Word prediction from images and speech
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Word prediction from images and speech

Yvis & @ PN JF(X)

max  feedfwd

conv

max
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Word prediction from images and speech

f(X) € RV is vector of T [ -
word probabilities

]
max  feedfwd

conv

max

[Kamper et al., arXiv'17]
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Word prediction from images and speech

W o

(. 9 '}:‘
3
f(X) € RV is vector of [T a8
word probabilities 5
1 \*\| - E
l.e., a spoken bag-of-words [T | s
(BoW) classifier Hﬂl'//7 L S

T 17
X
/ L

[Kamper et al., arXiv'17]
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Word prediction from images and speech

Vision system outputs vy, giving probability of word w for image I:

Yvis,w = P(wu77)
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Word prediction from images and speech

Vision system outputs vy, giving probability of word w for image I:
Yvis,w = P(w‘177)
Interpret dimension w of the speech network output f(X) as:

fu(X) = P(w]X,8)
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Word prediction from images and speech

Vision system outputs vy, giving probability of word w for image I:
Yvis,w = P(w|1,7)

Interpret dimension w of the speech network output f(X) as:
fu(X) = P(w| X, 0)

Train using cross-entropy loss (i.e. soft targets):

w
L(f(X)Myvis) == Z {yviS,w log fw(X) + (1 - yvis,w) log [1 - fw(X)]}
w=1
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Word prediction from images and speech

Vision system outputs vy, giving probability of word w for image I:
Yvis,w = P(w|1,7)

Interpret dimension w of the speech network output f(X) as:
fu(X) = P(w| X, 0)

Train using cross-entropy loss (i.e. soft targets):
W
L(f(X):Yvis) = = 2 {tvisw 108 fu(X) + (1 = guisw) log [1 — fu(X)]}
w=1
If yvis,w € {0,1}, this is summed log loss of W binary classifiers.

[Kamper et al., arXiv'17]
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Images paired with untranscribed speech

We are still in this setting:

F&""i i e
The b 4 g

% B -
iilﬁﬂﬁ‘ﬁ .lgu. =

e l.e., we do not use any of the speech transcriptions during model
training (only for evaluation)

e But our resulting model can make bag-of-words (BoW) predictions
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The vision system

Yuis |

VGG-16 input layers (1.3M images)

[Simonyan and Zisserman, arXiv'14]

Train on Flickr30k (caption BoW labels)

Targets: W = 1000 most common word
types after removing stop words

Note: Vision system could be seen as
language independent (future work)

[
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Experimental details

Data: 8000 images with 5 spoken captions, divided into train,
development and test sets [Harwath and Glass, ASRU'15]

Prediction: Output words w where f,,(X) > «
Tasks: Spoken bag-of-words prediction; keyword spotting

Evaluation: Compare to words in transcriptions of test data
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Task 1: Spoken bag-of-words prediction

Input utterance Predicted BoW labels
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Input utterance Predicted BoW labels
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Task 1: Spoken bag-of-words prediction

Input utterance

Predicted BoW labels

man on bicycle is doing tricks in an old
building

a little girl is climbing a ladder
a rock climber standing in a crevasse
a dog running in the grass around sheep

a man in a miami basketball uniform
looking to the right

, bike, , riding,
wearing

child, , , young
climbing, man,
, field, ,

ball, .
player, , wearing

30/38



Task 1: Spoken bag-of-words prediction

Input utterance

Predicted BoW labels

man on bicycle is doing tricks in an old
building

a little girl is climbing a ladder
a rock climber standing in a crevasse
a dog running in the grass around sheep

a man in a miami basketball uniform
looking to the right

bicycle, bike, man, riding,
wearing

child, girl, little, young
climbing, man, rock
dog, field, grass, running

ball, basketball, man,
player, uniform, wearing
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Precision (%)

Task 1: Spoken bag-of-words prediction

o
o
1

D
o
1

W
o
1

DO
o
1

I Unigram baseline
[ VisionSpeechCNN
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Task 1: Spoken bag-of-words prediction

I Unigram baseline
[ VisionSpeechCNN
I OracleSpeechCNN
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Task 1: Spoken bag-of-words prediction

False alarm keywords and words in corresponding utterances
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Task 1: Spoken bag-of-words prediction

False alarm keywords and words in corresponding utterances:

& 2 o Q 2 <@ 9
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® 3
o o N o »
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man - ° > & & & snow - O D S\go > &
Q N $ QO
&
¢  .Q RS 2 S o
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3
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Task 2: Keyword spotting

Keyword

Example of matched utterance

Type

beach
behind
bike
boys
large
play
sitting
yellow

young

(one of top 10)
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Example of matched utterance

Type
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behind
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boys
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young

a boy in a yellow shirt is walking on a beach ...
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Keyword

Example of matched utterance

Type

beach
behind
bike
boys
large
play
sitting
yellow

young

a boy in a yellow shirt is walking on a beach ...

a surfer does a flip on a wave

a dirt biker flies through the air

correct

mistake
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Task 2: Keyword spotting

Keyword

Example of matched utterance

Type

beach
behind
bike
boys
large
play
sitting
yellow

young

a boy in a yellow shirt is walking on a beach ...

a surfer does a flip on a wave

a dirt biker flies through the air

correct
mistake

variant
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys

large

play

sitting

yellow

young
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park

large

play

sitting

yellow

young
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large

play

sitting

yellow

young
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . a rocky cliff overlooking a body of water

play

sitting

yellow

young
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beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . a rocky cliff overlooking a body of water semantic
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic

33/38



Task 2:

Keyword spotting

Model PQ1o0 PaN EER
Unigram baseline 5.0 3.5 50.0
VisionSpeechCNN 54.5 33.1 22.3
OracleSpeechCNN 96.5 83.0 4.1
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Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content related in meaning to
a given textual keyword
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Retrieve all utterances in a set containing content related in meaning to
a given textual keyword

Model PQ@10

Unigram baseline 10.0
VisionSpeechCNN 82.5
OracleSpeechCNN 99.5
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Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content related in meaning to
a given textual keyword

Model PQ@10

Unigram baseline 10.0
VisionSpeechCNN 82.5
OracleSpeechCNN 99.5

Thoughts on this task are very welcome!

35,38



Conclusions and Future Work



Summary and conclusion

e We are able to discover (some) structure directly from raw speech
audio (segmentation and clustering) [Kamper et al., TASLP'16; arXiv'16]

e Visual grounding makes it possible to develop a word prediction
model without any parallel speech and text [Kamper et al., arXiv'17]

e Useful to look at speech processing from a different perspective
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Thorough analysis of VisionSpeech models to see if they learn
something about semantics; multi-lingual aspects

BayesSeg learns from acoustics, VisionSpeech captures something
about semantics: can we combine these?

Building audio analysis tools for field linguists

What can we learn about language acquisition in humans?

Language acquisition in robots
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Code: https://github.com/kamperh/


https://github.com/kamperh/

References |

O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental neural networks for speech
recognition,” in Proc. Interspeech, 2013.

R. Bernardi, R. Cakici, D. Elliott, A. Erdem, E. Erdem, N. lkizler-Cinbis, F. Keller,
A. Muscat, and B. Plank, “Automatic description generation from images: A survey of
models, datasets, and evaluation measures,” J. Artif. Intell. Res., vol. 55, pp. 409-442, 2016.

L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic speech recognition for
under-resourced languages: A survey,” Speech Commun., vol. 56, pp. 85-100, 2014.

D. Harwath, A. Torralba, and J. R. Glass, “Unsupervised learning of spoken language with
visual context,” in Proc. NIPS, 2016.

D. Harwath and J. Glass, “Deep multimodal semantic embeddings for speech and images,” in
Proc. ASRU, 2015.

A. Jansen and B. Van Durme, “Indexing raw acoustic features for scalable zero resource
search,” in Proc. Interspeech, 2012.

A. Jansen et al., “A summary of the 2012 JHU CLSP workshop on zero resource speech
technologies and models of early language acquisition,” in Proc. ICASSP, 2013.

H. Kamper, M. Elsner, A. Jansen, and S. J. Goldwater, “Unsupervised neural network based
feature extraction using weak top-down constraints,” in Proc. ICASSP, 2015.



References ||

H. Kamper, A. Jansen, and S. J. Goldwater, “Unsupervised word segmentation and lexicon
discovery using acoustic word embeddings,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 24, no. 4, pp. 669-679, 2016.

H. Kamper, W. Wang, and K. Livescu, “Deep convolutional acoustic word embeddings using
word-pair side information,” in Proc. ICASSP, 2016.

H. Kamper, S. J. Goldwater, and A. Jansen, “Fully unsupervised small-vocabulary speech
recognition using a segmental Bayesian model,” in Proc. Interspeech, 2015.

H. Kamper, A. Jansen, and S. J. Goldwater, “A segmental framework for fully-unsupervised
large-vocabulary speech recognition,” arXiv preprint arXiv:1606.06950, 2016.

H. Kamper, S. Settle, G. Shakhnarovich, and K. Livescu, “Visually grounded learning of
keyword prediction from untranscribed speech,” arXiv preprint arXiv:1703.08136, 2017.

C.-y. Lee, T. O'Donnell, and J. R. Glass, “Unsupervised lexicon discovery from acoustic
input,” Trans. ACL, vol. 3, pp. 389-403, 2015.

K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-dimensional acoustic embeddings of
variable-length segments in low-resource settings,” in Proc. ASRU, 2013.

V. Lyzinski, G. Sell, and A. Jansen, “An evaluation of graph clustering methods for
unsupervised term discovery,” in Proc. Interspeech, 2015.



References |1l

D. Palaz, G. Synnaeve, and R. Collobert, “Jointly learning to locate and classify words using
convolutional networks,” in Proc. Interspeech, 2016.

0. J. Rasanen, G. Doyle, and M. C. Frank, “Unsupervised word discovery from speech using
automatic segmentation into syllable-like units,” in Proc. Interspeech, 2015.

O. Résanen and H. Rasilo, “A joint model of word segmentation and meaning acquisition
through cross-situational learning,” Psychol. Rev., vol. 122, no. 4, pp. 792-829, 2015.

V. Renkens and H. Van hamme, “Mutually exclusive grounding for weakly supervised
non-negative matrix factorisation,” in Proc. Interspeech, 2015.

D. Roy, “Learning from sights and sounds: A computational model,” Ph.D. dissertation,
Learning from Sights and Sounds: A Computational Model, Cambridge, MA, 1999.

G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dimitriadis, X. Cui,

B. Ramabhadran, M. Picheny, L.-L. Lim, B. Roomi, and P. Hall, “English conversational
telephone speech recognition by humans and machines,” arXiv preprint arXiv:1703.02136,
2017.

S. Settle and K. Livescu, “Discriminative acoustic word embeddings: Recurrent neural
network-based approaches,” in Proc. SLT, 2016.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.



References |V

M. Versteegh, R. Thiolliere, T. Schatz, X. N. Cao, X. Anguera, A. Jansen, and E. Dupoux,
“The Zero Resource Speech Challenge 2015," in Proc. Interspeech, 2015.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption
generator,” in Proc. CVPR, 2015.

O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, “A hierarchical system for word
discovery exploiting DTW-based initialization,” in Proc. ASRU, 2013.

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig,
“Achieving human parity in conversational speech recognition,” arXiv preprint
arXiv:1610.05256, 2016.



	Introduction
	Segmental Bayesian Model
	Visually Grounded Keyword Prediction
	Summary and Conclusion
	References

