
# Learning from unlabelled speech, with and without visual cues

Ohio State University, May 2017

Herman Kamper

Toyota Technological Institute at Chicago http://www.kamperh.com/









[Xiong et al., arXiv'16]; [Saon et al., arXiv'17]



[Xiong et al., arXiv'16]; [Saon et al., arXiv'17]

ullet Google Voice: English, Spanish, German, ..., Zulu ( $\sim$ 50 languages)



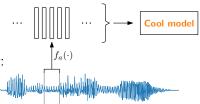
[Xiong et al., arXiv'16]; [Saon et al., arXiv'17]

- Google Voice: English, Spanish, German, ..., Zulu ( $\sim$ 50 languages)
- Data: 2000 hours transcribed speech audio;  $\sim 350 M/560 M$  words text



[Xiong et al., arXiv'16]; [Saon et al., arXiv'17]

- Google Voice: English, Spanish, German, ..., Zulu ( $\sim$ 50 languages)
- ullet Data: 2000 hours transcribed speech audio;  $\sim\!350 \mathrm{M}/560 \mathrm{M}$  words text
- Can we do this for all 7000 languages spoken in the world?

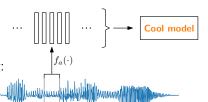

#### Unsupervised, or zero-resource, speech processing:

What can we learn directly from raw speech?

#### Unsupervised, or zero-resource, speech processing:

What can we learn directly from raw speech?

Unsupervised representation learning:




#### Unsupervised, or zero-resource, speech processing:

What can we learn directly from raw speech?

• Unsupervised representation learning:

Query-by-example search



#### Unsupervised, or zero-resource, speech processing:

- What can we learn directly from raw speech?
- Unsupervised representation learning:
- Query-by-example search
- Unsupervised segmentation and clustering (word discovery)



#### Unsupervised, or zero-resource, speech processing:

What can we learn directly from raw speech? Unsupervised representation learning:

• Query-by-example search

clustering (word discovery)

Unsupervised segmentation and clustering (word discovery)

#### Learning from weak (distant) labels:

··· Cool model

#### Unsupervised, or zero-resource, speech processing:

- What can we learn directly from raw speech?
- Unsupervised representation learning:
- Query-by-example search
- Unsupervised segmentation and clustering (word discovery)

#### Learning from weak (distant) labels:

- What can we learn from speech paired with another modality?
- E.g. translations or images

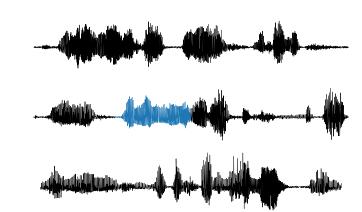
## Why learn with no or weak labels?

• Criticism: You always have some labelled data

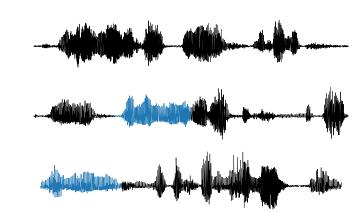
### Why learn with no or weak labels?

- Criticism: You always have some labelled data, but...
- Get insight into human language acquisition [Räsänen and Rasilo, '15]
- Language acquisition in robots [Roy, '99]; [Renkens and Van hamme, '15]

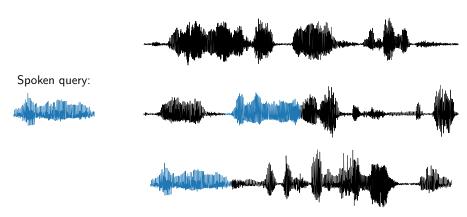
• Analysis of audio for unwritten languages [Besacier et al., '14]


### Why learn with no or weak labels?

- Criticism: You always have some labelled data, but...
- Get insight into human language acquisition [Räsänen and Rasilo, '15]
- Language acquisition in robots [Roy, '99]; [Renkens and Van hamme, '15]
- Analysis of audio for unwritten languages [Besacier et al., '14]
- New insights and models for speech processing [Jansen et al., '13]







Spoken query:



Spoken query:



Spoken query:



Useful speech system, not requiring any transcribed speech

# Learning from unlabelled speech with and without visual cues

# Learning from unlabelled speech with and without visual cues

#### Talk outline:

1. Unsupervised segmentation and clustering of speech (without)

# Learning from unlabelled speech with and without visual cues

#### Talk outline:

- 1. Unsupervised segmentation and clustering of speech (without)
- 2. Using images to visually ground untranscribed speech (with)

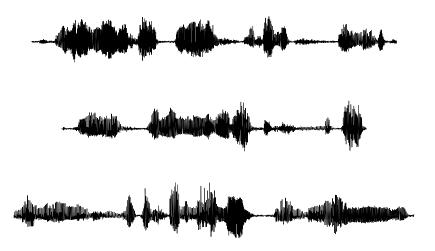
Unsupervised segmentation and clustering:

# Segmental Bayesian Speech Model

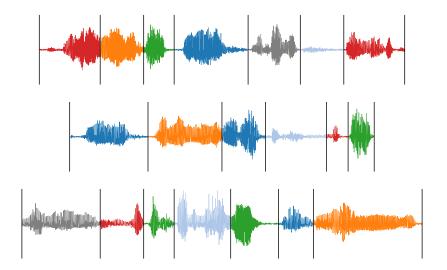
#### Unsupervised segmentation and clustering:

# Segmental Bayesian Speech Model



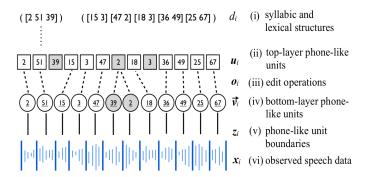

Aren Jansen




Sharon Goldwater

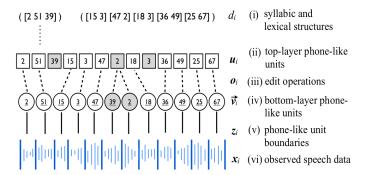
# Full-coverage segmentation and clustering

# Full-coverage segmentation and clustering




# Full-coverage segmentation and clustering

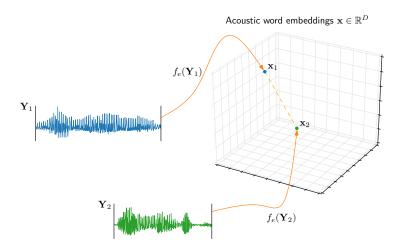



# Bayesian models for full-coverage segmentation

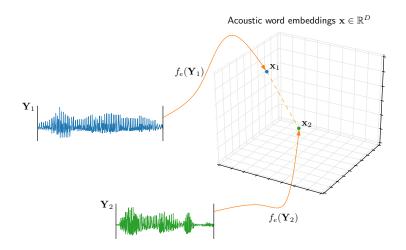
**Previous models** use explicit subword discovery directly on speech features, e.g. [Lee et al., TACL'15]:



# Bayesian models for full-coverage segmentation

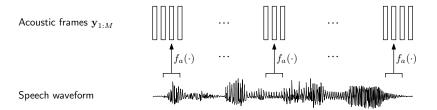

**Previous models** use explicit subword discovery directly on speech features, e.g. [Lee et al., TACL'15]:

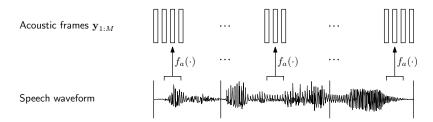


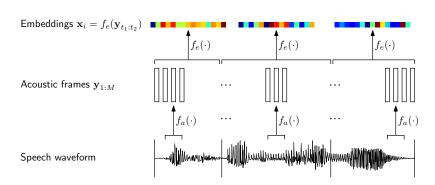

Our approach uses whole-word segmental representations, i.e. acoustic word embeddings [Kamper et al., TASLP'16]

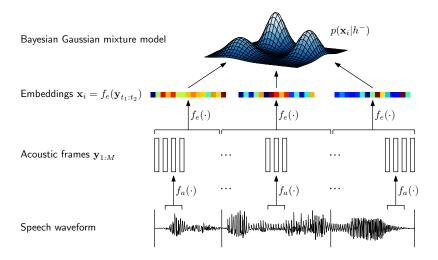
# Acoustic word embeddings

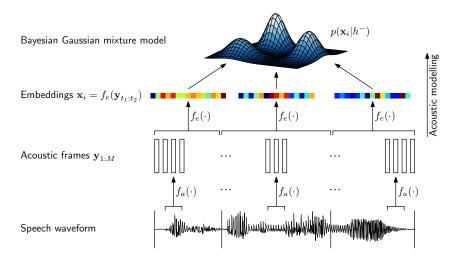
### Acoustic word embeddings

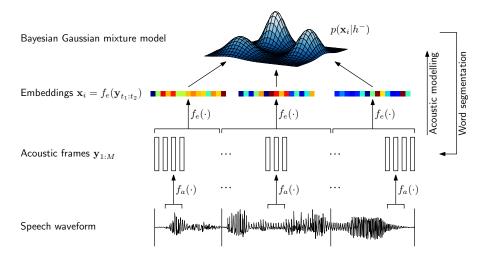




#### Acoustic word embeddings





Dynamic programming alignment has quadratic complexity, while embedding comparison is linear time. Can use standard clustering.



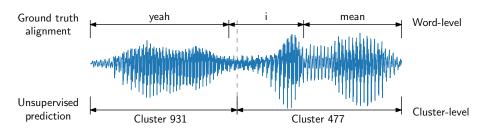





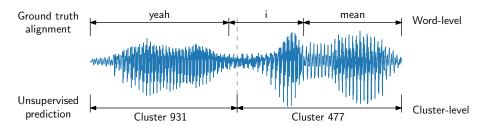







# Acoustic word embeddings: Downsampling

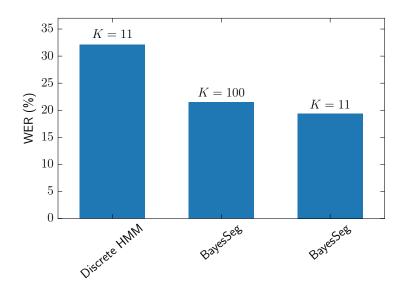



- Simple embedding approach also used in other studies
  - e.g. [Abdel-Hamid et al., 2013]
- Downsampling is simple, but actually hard to beat (unsupervised)
- Ongoing work, e.g.,
  [Levin et al., ASRU'13]; [Kamper et al.,
  ICASSP'16]; [Settle and Livescu, SLT'16]

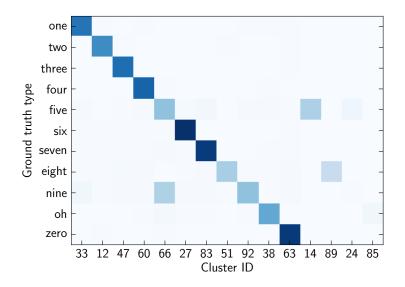
#### **Evaluation**



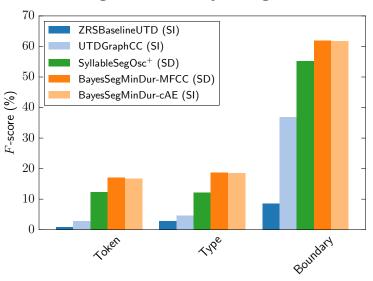
#### **Evaluation**




#### Metrics:

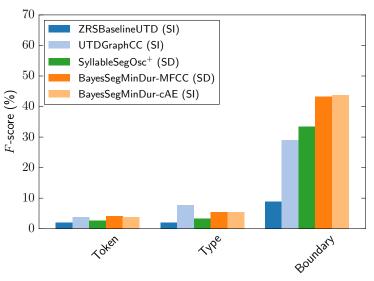

- Unsupervised word error rate (WER)
- ullet Word token precision, recall, F-score
- Word type precision, recall, F-score
- ullet Word boundary precision, recall, F-score

# Small-vocabulary segmentation and clustering


# Small-vocabulary segmentation and clustering



# Small-vocabulary segmentation and clustering

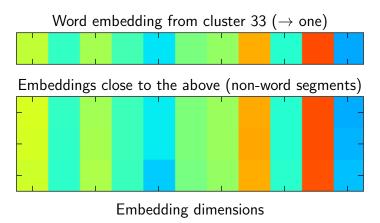



#### Large-vocabulary: English



ZRSBaselineUTD: [Versteegh et al., IS'15]. UTDGraphCC: [Lyzinski et al., IS'15]. SyllableSegOsc<sup>+</sup>: [Räsänen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16].

#### Large-vocabulary: Xitsonga




ZRSBaselineUTD: [Versteegh et al., IS'15]. UTDGraphCC: [Lyzinski et al., IS'15]. SyllableSegOsc+: [Räsänen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16].

#### Listen to discovered clusters

- Data for small-vocabulary experiments: Play
- Small-vocabulary cluster 45: Play
- Large-vocabulary English cluster 1214: Play
- Large-vocabulary Xitsonga cluster 629: Play

# The true (less rosy) picture



Using visual cues to learn from untranscribed speech:

# **Visually Grounded Keyword Prediction**

Using visual cues to learn from untranscribed speech:

## **Visually Grounded Keyword Prediction**



Shane Settle



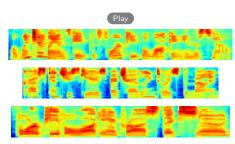
Greg Shakhnarovich



Karen Livescu



# Using images for grounding language

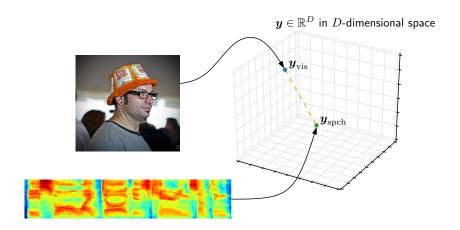

#### Using images for grounding language

- Image captioning: Generate written natural language description of a given image [Vinyals et al., CVPR'15]
- Grounding written language using images [Bernardi et al., JAIR'16]

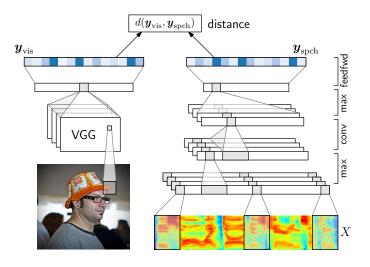
## Using images for grounding language


- Image captioning: Generate written natural language description of a given image [Vinyals et al., CVPR'15]
- Grounding written language using images [Bernardi et al., JAIR'16]
- We consider images paired with unlabellel spoken captions:






# Map images and speech into common space


# Map images and speech into common space

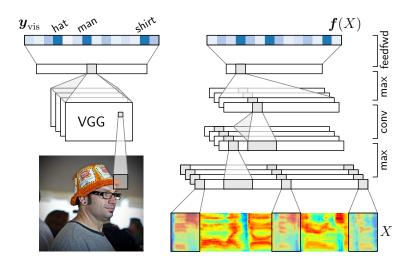


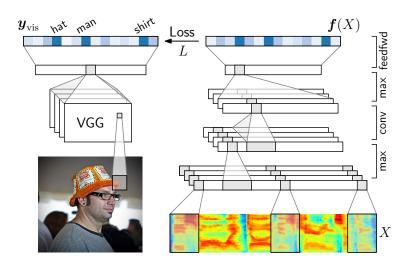
# Retrieval in common (semantic) space

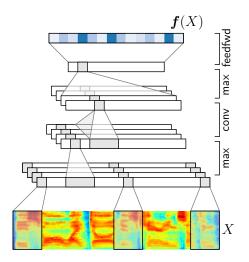


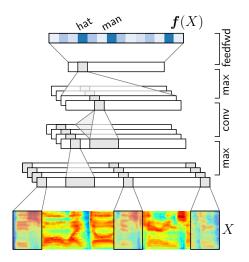
# Can we use (supervised) vision model to get labels?



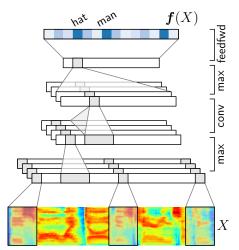

Cannot obtain textual labels for the speech using this model





[Kamper et al., arXiv'17]

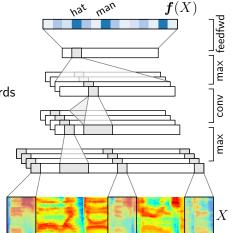



[Kamper et al., arXiv'17]








 $\boldsymbol{f}(X) \in \mathbb{R}^W$  is vector of word probabilities



 $\boldsymbol{f}(X) \in \mathbb{R}^W \text{ is vector of word probabilities}$ 

I.e., a spoken bag-of-words (BoW) classifier



Vision system outputs  $oldsymbol{y}_{\mathrm{vis}}$ , giving probability of word w for image I:

$$y_{\mathrm{vis},w} = P(w|I, \gamma)$$

Vision system outputs  $oldsymbol{y}_{\mathrm{vis}}$ , giving probability of word w for image I:

$$y_{\text{vis},w} = P(w|I, \gamma)$$

Interpret dimension w of the speech network output f(X) as:

$$f_w(X) = P(w|X, \boldsymbol{\theta})$$

Vision system outputs  $oldsymbol{y}_{\mathrm{vis}}$ , giving probability of word w for image I:

$$y_{\text{vis},w} = P(w|I, \gamma)$$

Interpret dimension w of the speech network output f(X) as:

$$f_w(X) = P(w|X, \boldsymbol{\theta})$$

Train using cross-entropy loss (i.e. soft targets):

$$L(\mathbf{f}(X), \mathbf{y}_{vis}) = -\sum_{w=1}^{W} \{y_{vis, w} \log f_w(X) + (1 - y_{vis, w}) \log [1 - f_w(X)]\}$$

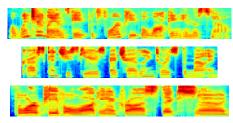
Vision system outputs  $oldsymbol{y}_{\mathrm{vis}}$ , giving probability of word w for image I:

$$y_{\text{vis},w} = P(w|I, \gamma)$$

Interpret dimension w of the speech network output  $\boldsymbol{f}(X)$  as:

$$f_w(X) = P(w|X, \boldsymbol{\theta})$$

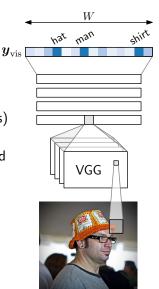
Train using cross-entropy loss (i.e. soft targets):


$$L(\mathbf{f}(X), \mathbf{y}_{vis}) = -\sum_{w=1}^{W} \{y_{vis,w} \log f_w(X) + (1 - y_{vis,w}) \log [1 - f_w(X)]\}$$

If  $y_{\mathrm{vis},w} \in \{0,1\}$ , this is summed log loss of W binary classifiers.

#### Images paired with untranscribed speech

We are still in this setting:






- I.e., we do not use any of the speech transcriptions during model training (only for evaluation)
- But our resulting model can make bag-of-words (BoW) predictions

#### The vision system

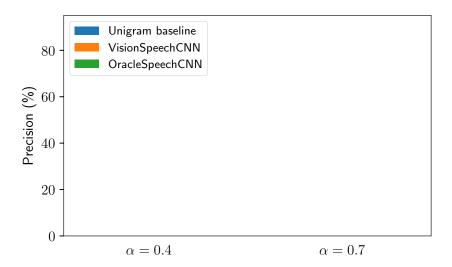
- VGG-16 input layers (1.3M images) [Simonyan and Zisserman, arXiv'14]
- Train on Flickr30k (caption BoW labels)
- Targets: W = 1000 most common word types after removing stop words
- Note: Vision system could be seen as language independent (future work)

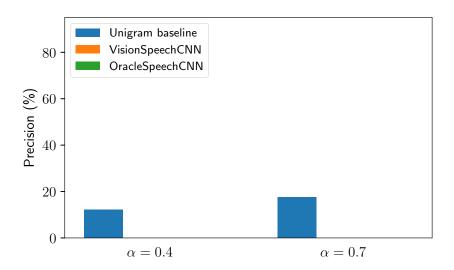


#### Experimental details

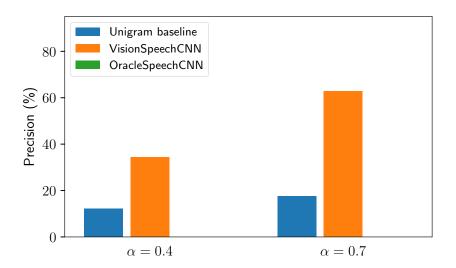
- Data: 8000 images with 5 spoken captions, divided into train, development and test sets [Harwath and Glass, ASRU'15]
- Prediction: Output words w where  $f_w(X) > \alpha$
- Tasks: Spoken bag-of-words prediction; keyword spotting
- Evaluation: Compare to words in transcriptions of test data

Input utterance Predicted BoW labels

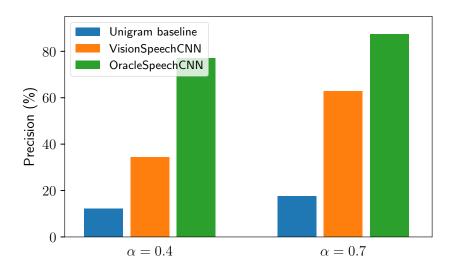




| Input utterance | Predicted BoW labels                |
|-----------------|-------------------------------------|
| Play            | bicycle, bike, man, riding, wearing |

| Input utterance                                   | Predicted BoW labels                |
|---------------------------------------------------|-------------------------------------|
| man on bicycle is doing tricks in an old building | bicycle, bike, man, riding, wearing |

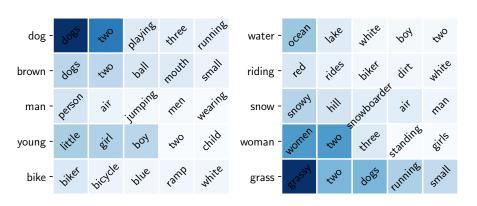

| Input utterance                                          | Predicted BoW labels                            |  |
|----------------------------------------------------------|-------------------------------------------------|--|
| man on bicycle is doing tricks in an old building        | bicycle, bike, man, riding, wearing             |  |
| a little girl is climbing a ladder                       | child, girl, little, young                      |  |
| a rock climber standing in a crevasse                    | climbing, man, rock                             |  |
| a dog running in the grass around sheep                  | dog, field, grass, running                      |  |
| a man in a miami basketball uniform looking to the right | ball, basketball, man, player, uniform, wearing |  |

| Input utterance                                          | Predicted BoW labels                            |  |
|----------------------------------------------------------|-------------------------------------------------|--|
| man on bicycle is doing tricks in an old building        | bicycle, bike, man, riding, wearing             |  |
| a little girl is climbing a ladder                       | child, girl, little, young                      |  |
| a rock climber standing in a crevasse                    | climbing, man, rock                             |  |
| a dog running in the grass around sheep                  | dog, field, grass, running                      |  |
| a man in a miami basketball uniform looking to the right | ball, basketball, man, player, uniform, wearing |  |






Task 1: Spoken bag-of-words prediction




Task 1: Spoken bag-of-words prediction



False alarm keywords and words in corresponding utterances

False alarm keywords and words in corresponding utterances:



| Keyword | Example of matched utterance | Туре |
|---------|------------------------------|------|
| beach   | Play (one of top 10)         |      |
| behind  |                              |      |
| bike    |                              |      |
| boys    |                              |      |
| large   |                              |      |
| play    |                              |      |
| sitting |                              |      |
| yellow  |                              |      |
| young   |                              |      |

| Keyword | Example of matched utterance                  | Туре |
|---------|-----------------------------------------------|------|
| beach   | a boy in a yellow shirt is walking on a beach |      |
| behind  |                                               |      |
| bike    |                                               |      |
| boys    |                                               |      |
| large   |                                               |      |
| play    |                                               |      |
| sitting |                                               |      |
| yellow  |                                               |      |
| young   |                                               |      |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  |                                               |         |
| bike    |                                               |         |
| boys    |                                               |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                |         |
| bike    |                                               |         |
| boys    |                                               |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                | mistake |
| bike    |                                               |         |
| boys    |                                               |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                | mistake |
| bike    | a dirt biker flies through the air            |         |
| boys    |                                               |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                | mistake |
| bike    | a dirt biker flies through the air            | variant |
| boys    |                                               |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                | mistake |
| bike    | a dirt biker flies through the air            | variant |
| boys    | Play                                          |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре    |
|---------|-----------------------------------------------|---------|
| beach   | a boy in a yellow shirt is walking on a beach | correct |
| behind  | a surfer does a flip on a wave                | mistake |
| bike    | a dirt biker flies through the air            | variant |
| boys    | two children play soccer in the park          |         |
| large   |                                               |         |
| play    |                                               |         |
| sitting |                                               |         |
| yellow  |                                               |         |
| young   |                                               |         |

| Keyword | Example of matched utterance                  | Туре     |
|---------|-----------------------------------------------|----------|
| beach   | a boy in a yellow shirt is walking on a beach | correct  |
| behind  | a surfer does a flip on a wave                | mistake  |
| bike    | a dirt biker flies through the air            | variant  |
| boys    | two children play soccer in the park          | semantic |
| large   |                                               |          |
| play    |                                               |          |
| sitting |                                               |          |
| yellow  |                                               |          |
| young   |                                               |          |

| Keyword | Example of matched utterance                  | Туре     |
|---------|-----------------------------------------------|----------|
| beach   | a boy in a yellow shirt is walking on a beach | correct  |
| behind  | a surfer does a flip on a wave                | mistake  |
| bike    | a dirt biker flies through the air            | variant  |
| boys    | two children play soccer in the park          | semantic |
| large   | Play                                          |          |
| play    |                                               |          |
| sitting |                                               |          |
| yellow  |                                               |          |
| young   |                                               |          |

| Keyword | Example of matched utterance                  | Туре     |
|---------|-----------------------------------------------|----------|
| beach   | a boy in a yellow shirt is walking on a beach | correct  |
| behind  | a surfer does a flip on a wave                | mistake  |
| bike    | a dirt biker flies through the air            | variant  |
| boys    | two children play soccer in the park          | semantic |
| large   | a rocky cliff overlooking a body of water     |          |
| play    |                                               |          |
| sitting |                                               |          |
| yellow  |                                               |          |
| young   |                                               |          |

| Keyword | Example of matched utterance                  | Туре     |
|---------|-----------------------------------------------|----------|
| beach   | a boy in a yellow shirt is walking on a beach | correct  |
| behind  | a surfer does a flip on a wave                | mistake  |
| bike    | a dirt biker flies through the air            | variant  |
| boys    | two children play soccer in the park          | semantic |
| large   | a rocky cliff overlooking a body of water     | semantic |
| play    |                                               |          |
| sitting |                                               |          |
| yellow  |                                               |          |
| young   |                                               |          |

Task 2: Keyword spotting

| Keyword | Example of matched utterance                  | Туре     |
|---------|-----------------------------------------------|----------|
| beach   | a boy in a yellow shirt is walking on a beach | correct  |
| behind  | a surfer does a flip on a wave                | mistake  |
| bike    | a dirt biker flies through the air            | variant  |
| boys    | two children play soccer in the park          | semantic |
| large   | a rocky cliff overlooking a body of water     | semantic |
| play    | children playing in a ball pit                | variant  |
| sitting | two people are seated at a table with drinks  | semantic |
| yellow  | a tan dog jumping over a red and blue toy     | mistake  |
| young   | a little girl on a kid swing                  | semantic |

Task 2: Keyword spotting

| Model                   | P@10 | P@N  | EER  |
|-------------------------|------|------|------|
| Unigram baseline        | 5.0  | 3.5  | 50.0 |
| ${\sf VisionSpeechCNN}$ | 54.5 | 33.1 | 22.3 |
| ${\sf OracleSpeechCNN}$ | 96.5 | 83.0 | 4.1  |

# Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content **related in meaning** to a given textual keyword

# Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content **related in meaning** to a given textual keyword

| Model                   | P@10 |
|-------------------------|------|
| Unigram baseline        | 10.0 |
| ${\sf VisionSpeechCNN}$ | 82.5 |
| OracleSpeechCNN         | 99.5 |

## Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content **related in meaning** to a given textual keyword

| Model                   | P@10 |
|-------------------------|------|
| Unigram baseline        | 10.0 |
| ${\sf VisionSpeechCNN}$ | 82.5 |
| ${\sf OracleSpeechCNN}$ | 99.5 |

Thoughts on this task are very welcome!

# Conclusions and Future Work

## Summary and conclusion

- We are able to discover (some) structure directly from raw speech audio (segmentation and clustering) [Kamper et al., TASLP'16; arXiv'16]
- Visual grounding makes it possible to develop a word prediction model without any parallel speech and text [Kamper et al., arXiv'17]
- Useful to look at speech processing from a different perspective

 Thorough analysis of VisionSpeech models to see if they learn something about semantics; multi-lingual aspects

- Thorough analysis of VisionSpeech models to see if they learn something about semantics; multi-lingual aspects
- BayesSeg learns from acoustics, VisionSpeech captures something about semantics: can we combine these?

- Thorough analysis of VisionSpeech models to see if they learn something about semantics; multi-lingual aspects
- BayesSeg learns from acoustics, VisionSpeech captures something about semantics: can we combine these?
- Building audio analysis tools for field linguists

- Thorough analysis of VisionSpeech models to see if they learn something about semantics; multi-lingual aspects
- BayesSeg learns from acoustics, VisionSpeech captures something about semantics: can we combine these?
- Building audio analysis tools for field linguists
- What can we learn about language acquisition in humans?

- Thorough analysis of VisionSpeech models to see if they learn something about semantics; multi-lingual aspects
- BayesSeg learns from acoustics, VisionSpeech captures something about semantics: can we combine these?
- Building audio analysis tools for field linguists
- What can we learn about language acquisition in humans?
- Language acquisition in robots

| Code: | https://github.com/kamperh/ |
|-------|-----------------------------|
|       |                             |

#### References I

- O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, "Deep segmental neural networks for speech recognition," in *Proc. Interspeech*, 2013.
- R. Bernardi, R. Cakici, D. Elliott, A. Erdem, E. Erdem, N. Ikizler-Cinbis, F. Keller, A. Muscat, and B. Plank, "Automatic description generation from images: A survey of models, datasets, and evaluation measures," *J. Artif. Intell. Res.*, vol. 55, pp. 409–442, 2016.
- L. Besacier, E. Barnard, A. Karpov, and T. Schultz, "Automatic speech recognition for under-resourced languages: A survey," Speech Commun., vol. 56, pp. 85–100, 2014.
- D. Harwath, A. Torralba, and J. R. Glass, "Unsupervised learning of spoken language with visual context," in *Proc. NIPS*, 2016.
- D. Harwath and J. Glass, "Deep multimodal semantic embeddings for speech and images," in Proc. ASRU, 2015.
- A. Jansen and B. Van Durme, "Indexing raw acoustic features for scalable zero resource search," in *Proc. Interspeech*, 2012.
- A. Jansen et al., "A summary of the 2012 JHU CLSP workshop on zero resource speech technologies and models of early language acquisition," in Proc. ICASSP, 2013.
- H. Kamper, M. Elsner, A. Jansen, and S. J. Goldwater, "Unsupervised neural network based feature extraction using weak top-down constraints," in *Proc. ICASSP*, 2015.

#### References II

- H. Kamper, A. Jansen, and S. J. Goldwater, "Unsupervised word segmentation and lexicon discovery using acoustic word embeddings," *IEEE/ACM Trans. Audio, Speech, Language Process.*, vol. 24, no. 4, pp. 669–679, 2016.
- H. Kamper, W. Wang, and K. Livescu, "Deep convolutional acoustic word embeddings using word-pair side information," in *Proc. ICASSP*, 2016.
- H. Kamper, S. J. Goldwater, and A. Jansen, "Fully unsupervised small-vocabulary speech recognition using a segmental Bayesian model," in *Proc. Interspeech*, 2015.
- H. Kamper, A. Jansen, and S. J. Goldwater, "A segmental framework for fully-unsupervised large-vocabulary speech recognition," arXiv preprint arXiv:1606.06950, 2016.
- H. Kamper, S. Settle, G. Shakhnarovich, and K. Livescu, "Visually grounded learning of keyword prediction from untranscribed speech," arXiv preprint arXiv:1703.08136, 2017.
- C.-y. Lee, T. O'Donnell, and J. R. Glass, "Unsupervised lexicon discovery from acoustic input," Trans. ACL, vol. 3, pp. 389–403, 2015.
- K. Levin, K. Henry, A. Jansen, and K. Livescu, "Fixed-dimensional acoustic embeddings of variable-length segments in low-resource settings," in *Proc. ASRU*, 2013.
- V. Lyzinski, G. Sell, and A. Jansen, "An evaluation of graph clustering methods for unsupervised term discovery," in *Proc. Interspeech*, 2015.

#### References III

- D. Palaz, G. Synnaeve, and R. Collobert, "Jointly learning to locate and classify words using convolutional networks," in *Proc. Interspeech*, 2016.
- O. J. Räsänen, G. Doyle, and M. C. Frank, "Unsupervised word discovery from speech using automatic segmentation into syllable-like units," in *Proc. Interspeech*, 2015.
- O. Räsänen and H. Rasilo, "A joint model of word segmentation and meaning acquisition through cross-situational learning," Psychol. Rev., vol. 122, no. 4, pp. 792–829, 2015.
- V. Renkens and H. Van hamme, "Mutually exclusive grounding for weakly supervised non-negative matrix factorisation," in Proc. Interspeech, 2015.
- D. Roy, "Learning from sights and sounds: A computational model," Ph.D. dissertation, Learning from Sights and Sounds: A Computational Model, Cambridge, MA, 1999.
- G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dimitriadis, X. Cui,
  B. Ramabhadran, M. Picheny, L.-L. Lim, B. Roomi, and P. Hall, "English conversational telephone speech recognition by humans and machines," arXiv preprint arXiv:1703.02136, 2017.
- S. Settle and K. Livescu, "Discriminative acoustic word embeddings: Recurrent neural network-based approaches," in Proc. SLT, 2016.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

#### References IV

- M. Versteegh, R. Thiollière, T. Schatz, X. N. Cao, X. Anguera, A. Jansen, and E. Dupoux, "The Zero Resource Speech Challenge 2015," in *Proc. Interspeech*, 2015.
- O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, "Show and tell: A neural image caption generator," in Proc. CVPR, 2015.
- O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, "A hierarchical system for word discovery exploiting DTW-based initialization," in *Proc. ASRU*, 2013.
- W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig, "Achieving human parity in conversational speech recognition," arXiv preprint arXiv:1610.05256, 2016.