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e Speech recognition applications are becoming wide-spread

e Google Voice Search already supports more than 50 languages:
English, Spanish, German, ..., Afrikaans, Zulu

e But there are roughly 7000 languages spoken in the world!

e Audio data are becoming available, even for languages spoken by
only a few speakers, but generally unlabelled

e Goal: Unsupervised learning of linguistic structure directly from raw

speech audio, in order to develop zero-resource speech technology
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Criticism:
e Always some labelled data to start with (e.g. related language)

e Small set of labelled data: semi-supervised problem

Reasons for focusing on purely unsupervised case:
e Modelling infant language acquisition [Rasanen, 2012]
e Language acquisition in robotics [Renkens and Van hamme, 2015]

e Practical use of zero-resource technology: Allow linguists to analyze

and investigate unwritten languages [Besacier et al., 2014]

e New insights and models for speech processing: E.g. unsupervised

methods can improve supervised systems [Jansen et al., 2012]
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Segmental modelling for full-coverage segmentation

Previous models use explicit subword discovery

directly on speech features, e.g. [Lee et al., 2015]:

([25| 39])  ([153]1[472][183] (36491 [2567]) d; (i) syllabicand
: lexical structures

(ii) top-layer phone-like

HHIWII‘SIIB||47||2||'8H3||36||49|E u it
i (iii) edit operations

@@@@..@ ...@. (iv) t)lottom:layer phone-

like units
| z  (v) phone-like unit

Our approach uses whole-word segmental

boundaries

Xi (vi)observed speech data

representations, i.e. acoustic word embeddings
[Kamper et al., IS'15; Kamper et al., TASLP'16]
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Acoustic word embeddings

x; € R% in d-dimensional space

Y

Dynamic programming alignment has quadratic complexity, while
embedding comparison is linear time. Can use standard clustering.
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An unsupervised segmental Bayesian model

Bayesian Gaussian mixture model

Acoustic modelling
Word segmentation

Speech waveform WMW%“MWMWWWWWWMWW
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Ground truth type

one
two
three
four
five
Six
seven
eight
nine
oh

Zero

T

"n

m

1 1 1 1 1 1 1 1 1
33 12 47 60 66 27 83 51 92
Cluster ID

1 1 1 1 1
38 63 14 89 24 85
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Applied to a large-vocabulary task
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ZRSBaselineUTD: [Versteegh et al., 2015]; UTDGraphCC: [Lyzinski et al., 2015];
SyllableSegOsct: [Rasinen et al., 2015]
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e Segmental conditional random field ASR
[Maas et al., 2012]:
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word classification CNN

Fully supervised approach
[Bengio and Heigold, 2014]
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Word similarity Siamese CNN

Weak supervision we sometimes have [Thiolliere et al., 2015] are known
word pairs: Strain = {(m, n) : (Y, Yy,) are of the same type}

Use idea of Siamese networks [Bromley et al., 1993]

Ty distance
X1 = fe(Y‘l> - - x2 = fe(Y2)
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Triplet margin-based loss

same
\

X different

Margin-based triplet hinge loss [Mikolov, 2013]:
ltriplcts = max {07 m + dcos (Xla X2) - dCOS(X17 XS)}

1—cos . Lo
where deos(X1,X2) = w is the cosine distance between x; and
X2, and m is a margin parameter. Pair (x1,X3) is same, (x1,X3) is
different.
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Evaluation of acoustic word embeddings
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But Siamese CNN still uses weak supervision. Still work to be done for
unsupervised case, e.g. [Chung et al., 1S'16].
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Looking forward

e Much to be done in zero-resource speech processing
e Core issues: evaluation; what do we want to discover?

e Do these models allow us to model language acquisition in human

infants?

e Can these models be used for language

acquisition in robotic applications?

e Extensions to multiple modalities
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e Unsupervised, or zero-resource, speech processing is an important

and cool problem

e Segmental acoustic word embeddings is a sensible way to approach

unsupervised segmentation and clustering, and is cool in general

e Interesting to look at speech problems from a different perspective:

allows you to play around with cool models, and get new insights

16 /17
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Poster: Better features using the correspondence autoencoder

Two problems in zero-resource speech processing:

1. Unsupervised segmentation and clustering

2. Unsupervised frame-level representation learning:

HHHHH oo b [ oot model

fa(‘)
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Code: https://github.com/kamperh


https://github.com/kamperh
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