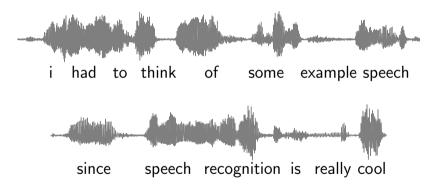
Speech systems that emulate human language acquisition

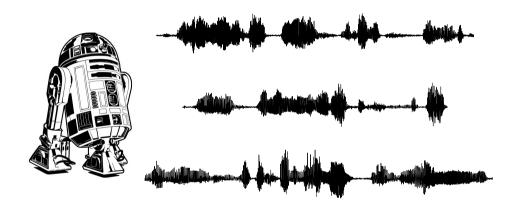
SLS group, MIT, Apr. 2024

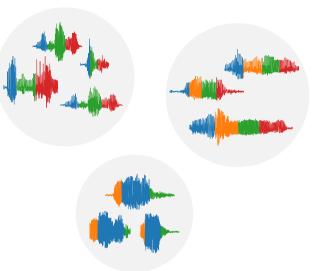
Herman Kamper

E&E Engineering, Stellenbosch University, South Africa http://www.kamperh.com/

Supervised speech recognition and synthesis





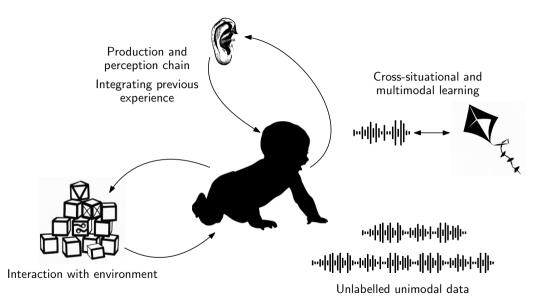


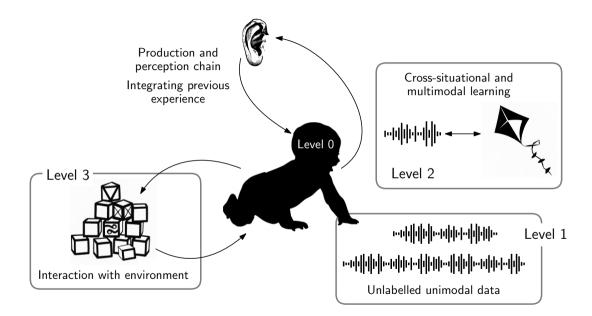
Why attempt to emulate language acquisition?

Improvements in speech technology

New insights and approaches for machines that learn

New insights into human learning





1. Mutual exclusivity in visually grounded speech models

Nortje et al., "Visually grounded few-shot word acquisition with fewer shots," in *Interspeech*, 2023. Nortje et al., "Visually grounded speech models have a mutual exclusivity bias," *Accepted*, 2024.

Children's Use of Mutual Exclusivity to Constrain the Meanings of Words

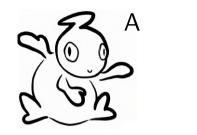
ELLEN M. MARKMAN

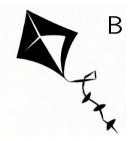
AND

GWYN F. WACHTEL

Stanford University

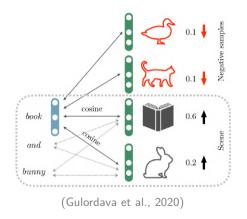
For children to acquire vocabulary as rapidly as they do, they must be able to eliminate many potential meanings of words. One way children may do this is to assume category terms are mutually exclusive. Thus, if a child already knows a label for an object, a new label for that object should be rejected.

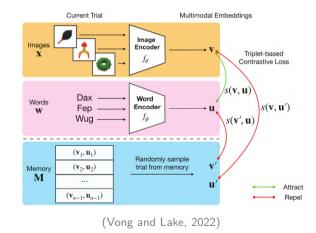




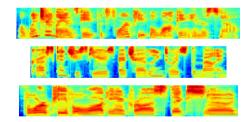
Previous computational studies

Previous computational studies



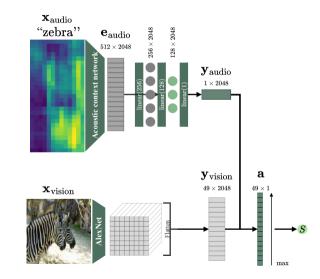


Visually grounded speech models



Harwath et al., "Unsupervised learning of spoken language with visual context," in NeurIPS, 2016.

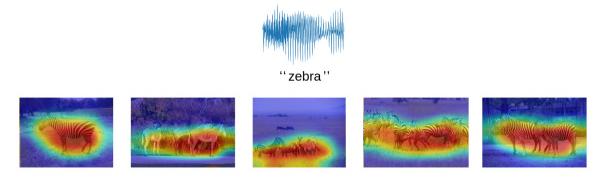
Multimodal attention network (MattNet)



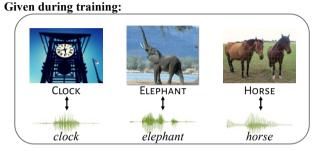
The acoustic context network is initialised with a CPC model trained on Places and LibriSpeech (level 1).

The vision branch is intialised with a self-supervised variant of AlexNet (level 1).

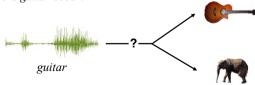
Attention visualisation



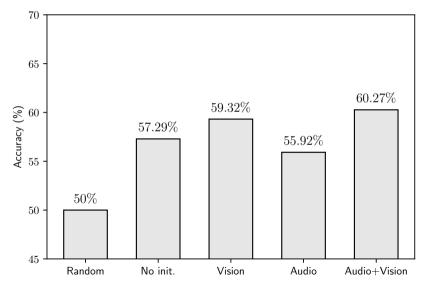
Testing a visually grounded speech model for the ME bias

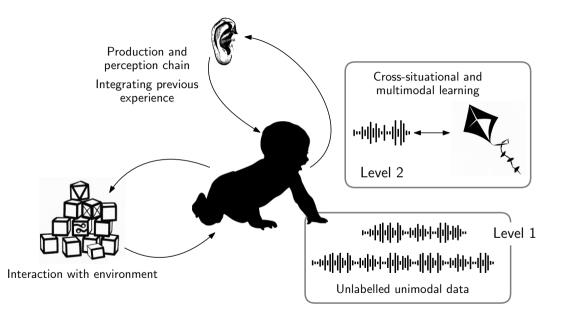


Test-time question: In which picture does the novel spoken keyword *guitar* occur?

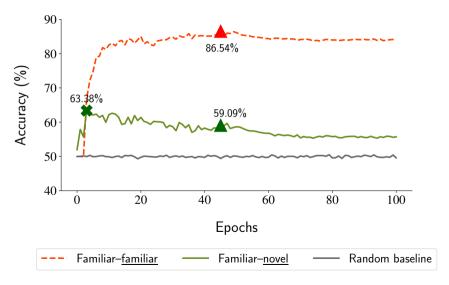


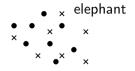
Mutual exclusivity results

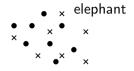




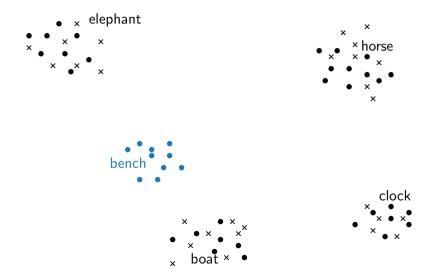
Mutual exclusivity results

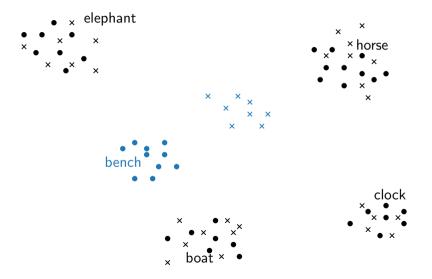


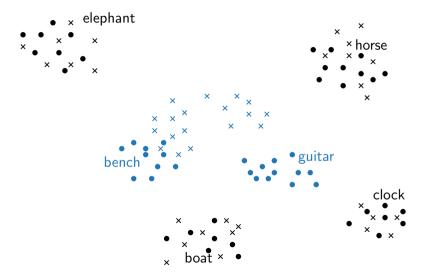


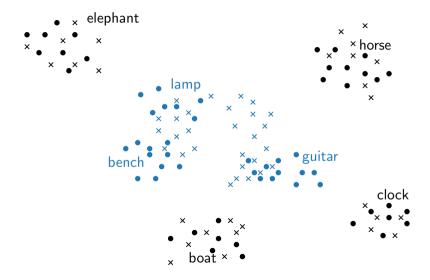


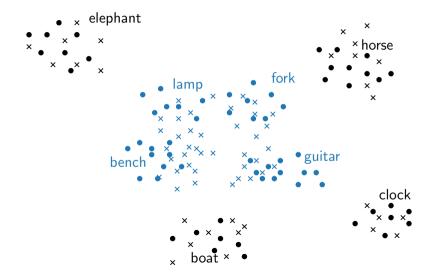


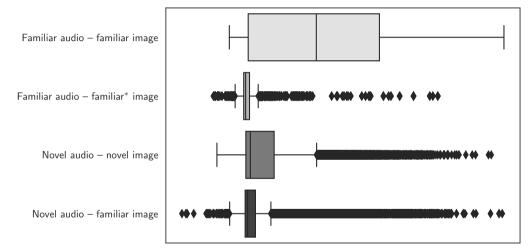












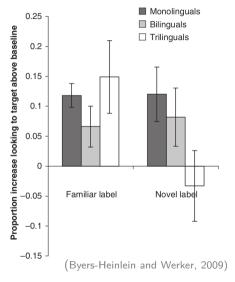
Similarity

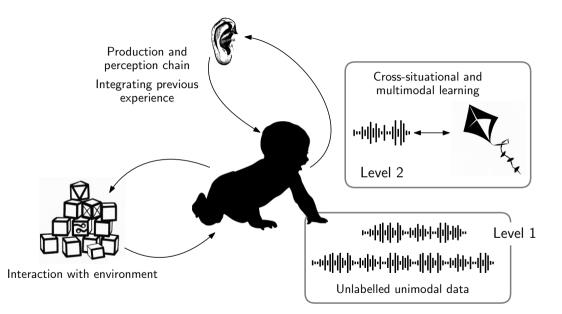
Conclusions and future work

- Showed an example of how we can compare an artificial learner to human infants
- Use speech and not written words
- Adds weight that visually grounded speech model could be studied as a cognitive proxy

Conclusions and future work

- Showed an example of how we can compare an artificial learner to human infants
- Use speech and not written words
- Adds weight that visually grounded speech model could be studied as a cognitive proxy
- Future work: Mutual exclusivity in multilingual models





2. Probing self-supervised speech models by listening

Benjamin van Niekerk

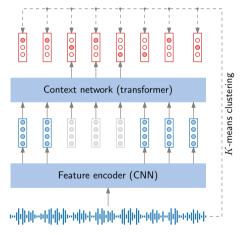
Matthew Baas

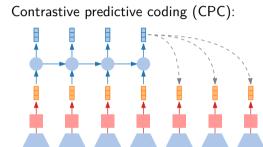
Marc-André Carbonneau

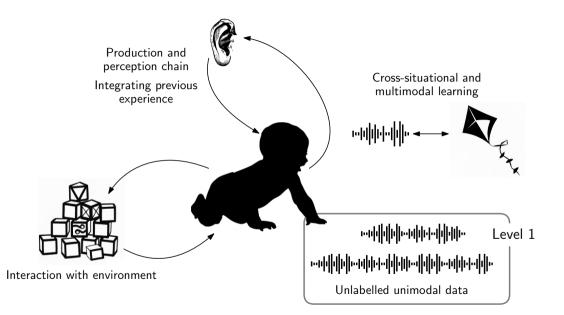
Baas et al., "Voice conversion with just nearest neighbors," in *Interspeech*, 2023. van Niekerk et al., "Rhythm modeling for voice conversion," *IEEE SPL*, 2023.

Self-supervised spoken language models

HuBERT / WavLM:

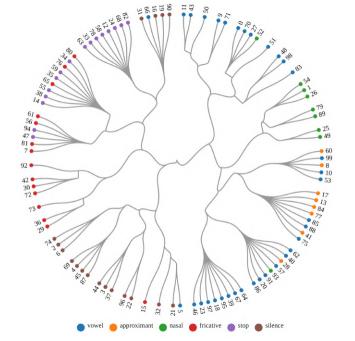


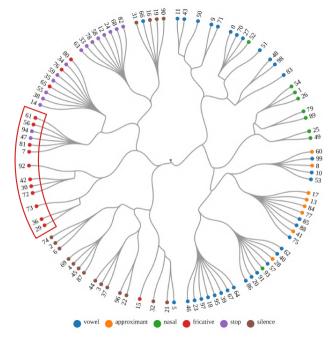


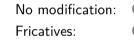


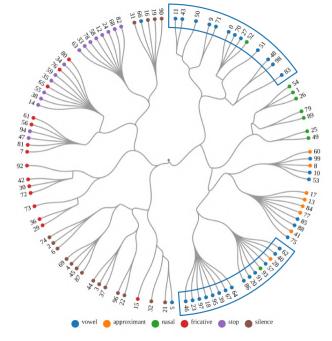
We use voice alteration and voice conversion as a probe to show you how phonetic content and speaker are captured.

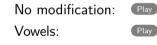
(But it's really just an excuse ...)

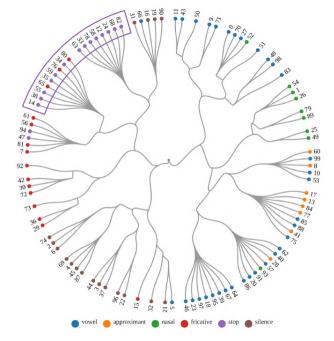


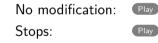


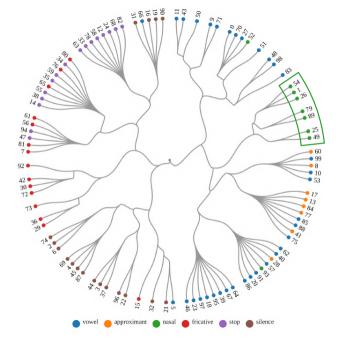


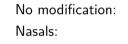








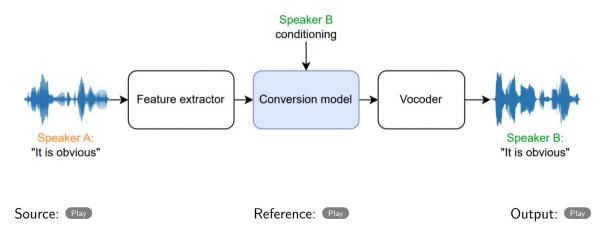




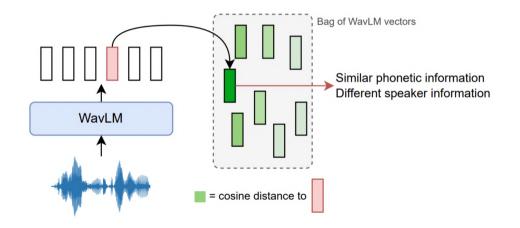
Play

Play

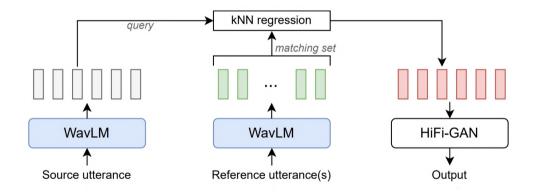
Voice conversion



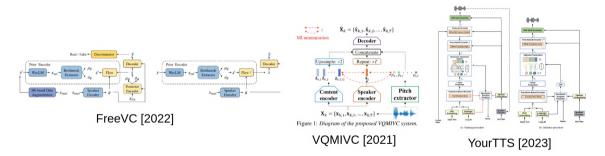
Our key idea



k-nearest neighbours voice conversion (kNN-VC)



Existing voice conversion systems



Voice conversion results

Model	$WER\downarrow$	$EER \uparrow$	$MOS\uparrow$	$SIM\uparrow$
Testset topline	5.96	_	4.24	3.19
VQMIVC (Wang et al., 2021)	59.46	2.22	2.70	2.09
YourTTS (Casanova et al., 2022)	11.93	25.32	3.53	2.57
FreeVC (Li et al., 2022)	7.61	8.97	4.07	2.38
kNN-VC	7.36	37.15	4.03	2.91

Fun samples

Cross-lingual conversion:

Source: Play Reference: Play Output: Play

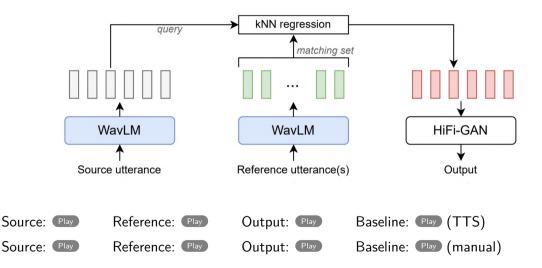
Whispered music conversion:

Source: Play Reference: Play Output: Play

Human-to-animal conversion:

Source: Play Referen

Voice conversion with stuttered reference speech

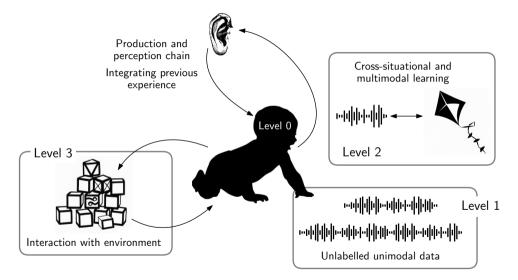


What does this tell us about self-supervised speech models?

- Broader phonetic categories are captured in hierarchy
- Phonetic content is matched through cosine distance
- But speaker characteristics are also still strongly captured

All of this is kind of expected, but it is still cool to be able to hear it!

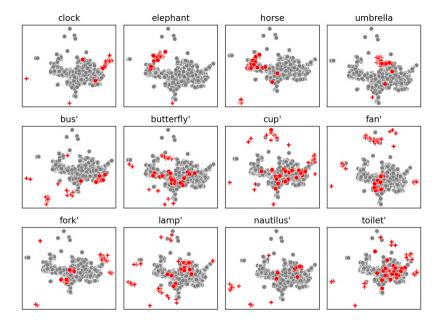
Conclusion



https://bshall.github.io/knn-vc/ https://www.kamperh.com/

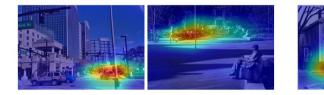
Mutual exclusivity results

		Model initialisation		Accuracy (%)		
		Audio (CPC)	Vision (AlexNet)	Familiar– <u>familiar</u>	Familiar– <u>novel</u>	
1	Random baseline	N/A	N/A	50.19	49.92	
2	MattNet	X	X	72.86	57.29	
3		×	1	85.89	59.32	
4		\checkmark	X	75.78	55.92	
5		\checkmark	1	83.20	60.27	



Attention visualisation

"fire hydrant"



Nortje et al., "Visually grounded few-shot word learning in low-resource settings," arXiv, 2023.