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Supervised speech recognition and synthesis

i had to think of some example speech

since speech recognition is really cool
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Why attempt to emulate language acquisition?

Improvements in speech technology

New insights and approaches for machines that learn

New insights into human learning
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Interaction with environment

Production and
perception chain

Unlabelled unimodal data

Cross-situational and
multimodal learningIntegrating previous
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1. Mutual exclusivity in visually grounded speech models

Leanne
Nortje

Dan
Oneat, ă

Yevgen
Matusevych

Nortje et al., “Visually grounded few-shot word acquisition with fewer shots,” in Interspeech, 2023.
Nortje et al., “Visually grounded speech models have a mutual exclusivity bias,” Accepted, 2024.
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Previous computational studies

(Gulordava et al., 2020) (Vong and Lake, 2022)
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Previous computational studies

(Gulordava et al., 2020) (Vong and Lake, 2022)
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Visually grounded speech models

Harwath et al., ”Unsupervised learning of spoken language with visual context,” in NeurIPS, 2016.
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Multimodal attention network (MattNet)
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c. Multimodal attention localising mechanism
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The acoustic context network is
initialised with a CPC model
trained on Places and
LibriSpeech (level 1).

The vision branch is intialised
with a self-supervised variant of
AlexNet (level 1).



Attention visualisation

Nortje et al., “Visually grounded few-shot word learning in low-resource settings,” arXiv, 2023.
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Testing a visually grounded speech model for the ME bias

horse
elephantclock

HorseElephantClock

Given during training:

guitar

Answer: 

Test-time question: In which picture does the novel spoken
keyword guitar occur?

?
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Mutual exclusivity results
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Mutual exclusivity results
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How is the representation space organised?
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*This is just a cartoon!
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How is the representation space organised?

Similarity

Familiar audio – familiar image

Familiar audio – familiar∗ image

Novel audio – novel image

Novel audio – familiar image
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Conclusions and future work

• Showed an example of how we can compare
an artificial learner to human infants

• Use speech and not written words

• Adds weight that visually grounded speech
model could be studied as a cognitive proxy

• Future work: Mutual exclusivity in
multilingual models

(Byers-Heinlein and Werker, 2009)
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2. Probing self-supervised speech models by listening

Benjamin
van Niekerk

Matthew
Baas

Marc-André
Carbonneau

Baas et al., “Voice conversion with just nearest neighbors,” in Interspeech, 2023.
van Niekerk et al., “Rhythm modeling for voice conversion,” IEEE SPL, 2023.



Self-supervised spoken language models
HuBERT / WavLM:

Feature encoder (CNN)

Context network (transformer)
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Contrastive predictive coding (CPC):
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We use voice alteration and voice conversion as a probe to
show you how phonetic content and speaker are captured.

(But it’s really just an excuse . . . )
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No modification: Play

Fricatives: Play
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No modification: Play

Vowels: Play
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No modification: Play

Stops: Play
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No modification: Play

Nasals: Play
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Voice conversion

Source: Play Reference: Play Output: Play
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Our key idea
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k-nearest neighbours voice conversion (kNN-VC)
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Existing voice conversion systems
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Voice conversion results

Model WER ↓ EER ↑ MOS ↑ SIM ↑

Testset topline 5.96 – 4.24 3.19

VQMIVC (Wang et al., 2021) 59.46 2.22 2.70 2.09
YourTTS (Casanova et al., 2022) 11.93 25.32 3.53 2.57
FreeVC (Li et al., 2022) 7.61 8.97 4.07 2.38
kNN-VC 7.36 37.15 4.03 2.91
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Fun samples

Cross-lingual conversion:

Source: Play Reference: Play Output: Play

Whispered music conversion:

Source: Play Reference: Play Output: Play

Human-to-animal conversion:

Source: Play Reference: Play Output: Play
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Voice conversion with stuttered reference speech

Source: Play Reference: Play Output: Play Baseline: Play (TTS)
Source: Play Reference: Play Output: Play Baseline: Play (manual)
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What does this tell us about self-supervised speech models?

• Broader phonetic categories are captured in hierarchy

• Phonetic content is matched through cosine distance

• But speaker characteristics are also still strongly captured

All of this is kind of expected, but it is still cool to be able to hear it!
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Conclusion
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https://bshall.github.io/knn-vc/

https://www.kamperh.com/

https://bshall.github.io/knn-vc/
https://www.kamperh.com/


Mutual exclusivity results

Model initialisation Accuracy (%)

Audio (CPC) Vision (AlexNet) Familiar–familiar Familiar–novel

1 Random baseline N/A N/A 50.19 49.92

2

MattNet

✗ ✗ 72.86 57.29
3 ✗ ✓ 85.89 59.32
4 ✓ ✗ 75.78 55.92
5 ✓ ✓ 83.20 60.27
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Attention visualisation

Nortje et al., “Visually grounded few-shot word learning in low-resource settings,” arXiv, 2023.
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