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Speech recognition success

[Xiong et al., arXiv’16]

• Google Voice: English, Spanish, German, . . . , Zulu (∼50 languages)

• Data: 2000 hours of labelled speech audio; ∼350M words of text

• But: Can we do this for all 7000 languages spoken in the world?
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Unsupervised speech processing

Developing unsupervised methods that can learn structure directly
from raw speech audio, i.e. zero-resource technology

Criticism: Always some data; semi-supervised problem

Reasons for purely unsupervised case:

• Modelling infant language acquisition [Räsänen, SpecCom’12]

• Language acquisition in robotics [Renkens and Van hamme, IS’15]

• Analysis of audio for unwritten languages [Besacier et al., SpecCom’14]

• New insights and models for speech processing [Jansen et al., ICASSP’13]
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Unsupervised speech processing: Two problems

1. Unsupervised frame-level representation learning:

fa(·)fa(·)

Cool model

2. Unsupervised segmentation and clustering:
How do we discover meaningful units in unlabelled speech?
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Unsupervised term discovery (UTD)

[Park and Glass, TASLP’08]
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Unsupervised speech processing: Two problems

1. Unsupervised frame-level
representation learning:

2. Unsupervised segmentation and clustering:
We focus on full-coverage segmentation and clustering

Our claim: Unsupervised speech processing benefits from
both top-down and bottom-up modelling
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Top-down and bottom-up modelling

Top-down: Use knowledge of higher-level units to learn about
lower-level parts

Bottom-up: Piece together lower-level parts to get more complex
higher-level structures

[Feldman et al., CCSS’09]
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Unsupervised frame-level representation learning:

The Correspondence Autoencoder

Micha Elsner Daniel Renshaw Aren Jansen Sharon Goldwater
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Supervised representation learning using DNN

ay ey k v

Input: speech frame(s)
e.g. MFCCs, filterbanks

Output: predict phone states
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Autoencoder (AE) neural network

Input speech frame

Reconstruct input

[Badino et al., ICASSP’14]

• Completely unsupervised

• But purely bottom-up

• Can we use top-down information?

• Idea: Unsupervised term discovery
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Unsupervised term discovery (UTD)

Can we use these discovered word pairs
to give weak top-down supervision?
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Weak top-down supervision: Align frames

[Jansen et al., ICASSP’13]
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Autoencoder (AE)

Input speech frame

Reconstruct input
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Correspondence autoencoder (cAE)

Frame from one word

Frame from other word in pair

Frame from one word

Unsupervised
feature extractor fa(·)

Frame from other word in pair

Frame from one word
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feature extractor fa(·)

Frame from other word in pair

Combine top-down and
bottom-up information
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Correspondence autoencoder (cAE)

Speech corpus

Initialize
weights

Train stacked
autoencoder
(pretraining)

Align word pair frames

Train correspondence
autoencoder

(1)

(2)

(3)

(4)

Unsupervised
term discovery

Unsupervised
feature
extractor

[Kamper et al., ICASSP’15]
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Intrinsic evaluation: Isolated word query task
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Extended: [Renshaw et al., IS’15] and [Yuan et al., IS’16]
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Unsupervised segmentation and clustering:

The Segmental Bayesian Model

Aren Jansen Sharon Goldwater
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Full-coverage segmentation and clustering
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Segmental modelling for full-coverage segmentation

Previous models use explicit subword discovery directly on speech
features, e.g. [Lee et al., 2015]:

Our approach uses whole-word segmental representations,
i.e. acoustic word embeddings [Kamper et al., IS’15; Kamper et al., TASLP’16]
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Acoustic word embeddings

xi ∈ Rd in d-dimensional space

fe(Y1)

fe(Y2)

Y2

Y1

Dynamic programming alignment has quadratic complexity, while
embedding comparison is linear time. Can use standard clustering.
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Unsupervised segmental Bayesian model
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Acoustic word embeddings: Downsampling

fe(·)

fa(·)

flatten • Simple embedding approach also
used in other studies
e.g. [Abdel-Hamid et al., 2013]

• Consider both MFCCs and cAE
features as frame-level function fa(·)

• cAE combines top-down learned
feature representations with
segmentation and clustering
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Evaluation

y ae ay m iy n

yeah i mean

Cluster 931 Cluster 477

Ground truth
alignment

Unsupervised
prediction

Word-level

Phoneme-level

Cluster-level

Metrics:

• Unsupervised word error rate (WER)
• Word token precision, recall, F -score: parsing quality
• Word type precision, recall, F -score: cluster quality
• Word boundary precision, recall, F -score: parsing quality
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Small-vocabulary segmentation and clustering
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Discrete HMM: [Walter et al., ASRU’13]. BayesSeg: [Kamper et al., TASLP’16].
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Small-vocabulary segmentation and clustering
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[Kamper et al., TASLP’16]
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Large-vocabulary: English
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SyllableSegOsc+: [Räsänen et al., IS’15]. BayesSeg: [Kamper et al., arXiv’16].
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The true (less rosy) picture

Word embedding from cluster 33 (→ one)

Embedding dimensions

Embeddings close to the above (non-word segments)
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Bottom-up constraints
• Minimum and maximum duration constraints

• Use unsupervised syllable boundary detection:

 
Figure 3: An example of segmentation with the oscillator. Top 

panel: Original waveform. Bottom panel: Amplitude envelope 

(the blue line) and oscillator amplitude (the magenta line). 

Detected boundaries (oscillator minima) and reference word 

boundaries are shown with vertical solid red and dashed black 

lines, respectively. VSeg and EnvMin boundaries are shown in 
the bottom panel with short green and blue lines, respectively. 

To roughly match the oscillator to the syllabic rhythm of 

speech (and thereby to theta-rhythm of brain oscillations), the 

center frequency was set to f0 = 4 Hz and bandwidth to "f = 8 

Hz (critical damping). The segmentation was carried out by 

feeding the speech envelope to the oscillator and marking all 

oscillator minima as segment boundaries. Phase-shift (approx. 

70 ms) between the envelope and the oscillator amplitude was 

compensated automatically by finding a constant delay that 

minimized the RMSE between the envelope and the oscillator 

amplitude across the entire signal. Fig. 3 shows an example of 

the segmentation process. 

2.2. Feature extraction and clustering 

Following the conceptual models of Ghitza [20] and Giraud & 

Poeppel [21], we assume that the syllabic rhythm provides 

frames (or “information packages”) within which more rapid 

sampling of detailed signal content takes place.  

To describe the spectral content of each syllable, standard 

MFCCs were used. More specifically, the first 12 MFCC 

coefficients and energy were first computed for the signals 

using a 25-ms window size and 10-ms step size, followed by 

cepstral mean and variance normalization across the recording. 

Then each discovered syllable segment i was uniformly 

divided into N disjoint sub-segments in time and the mean of 

the MFCC vectors yi,j falling within each sub-segment j were 

computed. Finally, the sub-segment MFCCs were 

concatenated into one fixed-length feature vector together with 

a scaled log-duration di of the syllable: 
yi,tot = [yi,1

T
, yi,2

T
, …, yi,N

T
 N/3*log(di)]

T
  (4) 

The scaling factor N/3 was set empirically to balance the scale 

of duration with the spectral content of the syllable tokens.  

Instead of using uniform temporal division, we also 

experimented with a faster (20–40 Hz) oscillator coupled to 

the syllabic-oscillator or to the envelopes of a Gammatone-

filterbank in order to segment syllables into sub-syllabic 

segments. Since both approaches led to very similar results as 

those obtained with uniform slicing of the syllables, the 

current results are reported using the simplest uniform 

segmentation with the number of sub-segments set to N = 5.  

In order to find recurring syllables, the syllable feature 

vectors were clustered in an unsupervised manner into Q 

clusters using the standard k-means algorithm. Clustering was 

carried out separately for each talker and the process was 

initialized by randomly sampling from the full set of syllable 

tokens from the talker. Speaker-specific clustering was chosen 

because the acoustic variability in the present material was too 

high to achieve notable improvements in performance by 

pooling patterns across multiple talkers, even after 

unsupervised vocal tract length normalization. We also 

investigated agglomerative clustering of syllable tokens using 

DTW and observed very similar results to the uniform spectral 

slicing approach. We also replicated this finding on Brent 

corpus [31] of infant-directed speech. This suggests that the 

entrainment to syllabic rhythm provides automatic temporal 

normalization for speech patterns and therefore separate time-

alignment is not needed for pattern matching purposes.  

In the present experiments, the number of clusters was set 

to 30% of the overall number of syllable tokens for a given 

talker. This parameter was set to balance the set of frequently 

recurring syllables with the large set of syllable types that 

occurred only once in a given talker’s data. We also tried to set 

the number of clusters to the expected number of unique 

syllable types based on Zipf’s law, but we found that estimate 

too low to account for the acoustic variability in the data. 

2.3. Word decoding with n-grams 

After clustering, monosyllabic words are in principle already 

represented as clusters. In order to discover multisyllabic 

words, we applied standard n-gram modeling to find recurring 

sequences of syllables. We started from the longest recurring 

n-grams (n = 3 in practice) and found all n-grams of that order 

that occurred at least twice in the data. Syllables that were part 

of these n-grams were excluded from further analysis and the 

process was repeated for the n-grams of the next highest order. 

The process was done all the way to unigrams by including all 

remaining unigrams as patterns. The output of the process was 

a list of pattern locations and their corresponding identifiers.  

3. Experiments 

3.1. Data and evaluation 

Evaluation of the system was performed on the Zerospeech-

challenge data sets. The data consist of two different corpora: 

one of conversational speech in American English, the 

Buckeye corpus [32], and a corpus of Tsonga speech [33]. As 

defined by the challenge, a 10.5 h subset of the Buckeye 

corpus was used for training. A total of 12 unique talkers 

contributed English data; all speech were recorded during 

interview sessions with a head-mounted microphone in a 

seminar room. Tsonga data were recorded in the field using 

the Woefzela mobile phone data collection app [33]; this 

dataset contained a total of 4.4 hours of speech from 24 

different talkers. Both datasets were provided with evaluation 

intervals that specified the timestamps for speech by the 

talkers of interest and excluded periods of silence or 

overlapping speech from another talker [25].  

3.2. Evaluation metrics 

All evaluations were performed using the Zerospeech 

evaluation kit described in [34]; the reader is directed to the 

original paper for full technical details. The basic method in 

the kit is to represent each discovered pattern as a sequence of 

phonemes of which at least 50% or 30-ms are covered by the 

pattern. Two basic aspects of the learned patterns are then 

measured, 1) the normalized edit distance (“NED”) between   
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Bottom-up constraints

Bayesian Gaussian mixture model
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Speech waveform

Performs top-down segmentation while adhering to
bottom-up constraints
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Effect of using cAE features

English (%) Xitsonga (%)

Embeds. Cluster Speaker Gender Cluster Speaker Gender

MFCC 29.9 55.9 87.6 24.5 43.1 87.1
cAE 30.0 35.7 73.8 33.1 29.3 76.6
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Summary and Conclusions



Conclusions

Unsupervised speech processing benefits from
both top-down and bottom-up modelling

• Correspondence autoencoder: Use top-down constraints with
bottom-up initialization to improve frame-level representations

• Segmental Bayesian model: Top-down segmentation taking
bottom-up constraints into account

• English and Xitsonga: Large-vocabulary multi-speaker data

• cAE in BayesSeg: Improves cluster, speaker and gender purity
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Extending this work

• Improve cAE using UTD and vice versa (with Sameer Bansal)

• Improve unsupervised acoustic word embeddings [Chung et al., IS’16]

• Simplify BayesSeg so that it can be applied to larger corpora

• Frame-based vs. segmental unsupervised models

• Evaluation: What do we want to discover?
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Looking forward

• Building audio analysis tools for field linguists

• Using weak labels, e.g. translations [Bansal et al., arXiv’16]
(with Sameer Bansal, Adam Lopez, Sharon Goldwater)

• Language acquisition in humans and robots

• Extending models to multiple modalities
(with Shane Settle, Karen Livescu,
Greg Shakhnarovich)
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Code: https://github.com/kamperh

https://github.com/kamperh
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