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PETER BRIGHT - 10/25/2016, 6:55 PM

1/35



Speech recognition success

dl'S) TECHNICA

TECHNOLOGY LAB —

Microsoft relez THE WALL STREET JOURNAL

.
Source toolk]t IHome World U.S. Politics Economy Business Tech Markets Opinien Arts Life

human-level s;°:"
recognition Speech Recognition Gets Conversational

Microsoft wants to put machinel By ROBERT MCMILLAN

May 28, 201512:54 pm ET
PETER BRIGHT - 10/25/2016, 6:55 PM



Speech recognition success

ars TECHI\ @C]%S\[E“YS Video 'US World Politics Entertainment Health de Oil

4493 195%
TECHNOLOGY LAB —
By BRIANMASTROIANNI  CBSHNEWS ~ Ocrober 18,2 ]RNQI
N

Microsofi” " 3seom
source to Microsoft says speech pinion Arts  Life

human-lc recognition technology . ...
recogniti pagches "human parity”

Microsoft wants to p1

May 28, 2015 12:54 pm ET
PETER BRIGHT - 10/25/2016, 6:55 PM

1/35



Speech recognition success

dlS TECHN o
®

CBSN WS  video (us (wona poitics | Entertainment weann o~ 05U
TECHNOLOGY LAB—

Ml cros Oﬂ By BRIANMASTROIANNI  CBSHEWS ~ Ocrober 18, 2016, 3:56 PM ]RN AL.
source to Microsoft says speech .. ..
human-lc recognition technology . ...
recogniti pagches "human parity”

Microsoft wants to p1

May 28, 2015 12:54 pm ET
PETER BRIGHT - 10/25/2016, 6:55 PM

[Xiong et al., arXiv'16]
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[Xiong et al., arXiv'16]

e Google Voice: English, Spanish, German, ..., Zulu (~50 languages)
e Data: 2000 hours of labelled speech audio; ~350M words of text

e But: Can we do this for all 7000 languages spoken in the world?
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Unsupervised speech processing

Developing unsupervised methods that can learn structure directly
from raw speech audio, i.e. zero-resource technology
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Unsupervised speech processing

Developing unsupervised methods that can learn structure directly
from raw speech audio, i.e. zero-resource technology

Criticism: Always some data; semi-supervised problem

Reasons for purely unsupervised case:
e Modelling infant language acquisition [Rasanen, SpecCom'12]
e Language acquisition in robotics [Renkens and Van hamme, 1S'15]
e Analysis of audio for unwritten languages  [Besacier et al., SpecCom'14]

e New insights and models for speech processing [Jansen et al., ICASSP'13]
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Unsupervised speech processing: Two problems

1. Unsupervised frame-level representation learning:

HHHHH v b [Cool mode

fa(‘)

2. Unsupervised segmentation and clustering:
How do we discover meaningful units in unlabelled speech?
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Unsupervised term discovery (UTD)
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Unsupervised speech processing: Two problems

1. Unsupervised frame-level HHHHH }—> Cool model
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We focus on full-coverage segmentation and clustering
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Unsupervised speech processing: Two problems

1. Unsupervised frame-level HHHHH }-’ Cool model

representation learning:
fa(')

2. Unsupervised segmentation and clustering:
We focus on full-coverage segmentation and clustering

Our claim: Unsupervised speech processing benefits from
both top-down and bottom-up modelling

6/35



Top-down and bottom-up modelling

Top-down: Use knowledge of higher-level units to learn about
lower-level parts

Bottom-up: Piece together lower-level parts to get more complex
higher-level structures

[Feldman et al., CCSS'09]
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Unsupervised frame-level representation learning:

The Correspondence Autoencoder
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The Correspondence Autoencoder
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Supervised representation learning using DNN

Output: predict phone states

Input: speech frame(s)
e.g. MFCCs, filterbanks
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Supervised representation learning using DNN

Output: predict phone states

ay ey k v

Phone classifier
> ..
learned jointly

- Unsupervised modelling:
No phone class targets to
train network on

J

Feature extractor f,(-)
learned from data

Input: speech frame(s)
e.g. MFCCs, filterbanks
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Autoencoder (AE) neural network

Reconstruct input

Input speech frame

[Badino et al., ICASSP’'14]
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e Completely unsupervised
e But purely bottom-up
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Autoencoder (AE) neural network

Reconstruct input

Completely unsupervised

But purely bottom-up
e Can we use top-down information?

e ldea: Unsupervised term discovery

Input speech frame

[Badino et al., ICASSP'14]
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Unsupervised term discovery (UTD)
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Unsupervised term discovery (UTD)

Can we use these discovered word pairs
{ to give weak top-down supervision?

e

s
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Weak top-down supervision: Align frames

[Jansen et al., ICASSP'13]
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Correspondence autoencoder (cAE)

Frame from other word in pair

Frame from one word
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Correspondence autoencoder (cAE)

Frame from other word in pair

L Unsupervised
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Correspondence autoencoder (cAE)

Frame from other word in pair

Combine top-down and
bottom-up information

Unsupervised
feature extractor f,(-)

Frame from one word
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Correspondence autoencoder (cAE)

Train stacked
—— autoencoder

(pretraining)
Speech corpus

)

autoencoder

M (4) Train correspondence

Initialize
weights

H

Unsupervised
— feature
extractor

Unsupervised
term discovery

Align word pair frames

[Kamper et al., ICASSP'15]
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Intrinsic evaluation: Isolated word query task
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Extended: [Renshaw et al., IS'15] and [Yuan et al., 1S'16]
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Unsupervised segmentation and clustering:

The Segmental Bayesian Model
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Full-coverage segmentation and clustering
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Segmental modelling for full-coverage segmentation

Previous models use explicit subword discovery directly on speech
features, e.g. [Lee et al., 2015]:
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Previous models use explicit subword discovery directly on speech
features, e.g. [Lee et al., 2015]:

(25! 39]) ([1531 4721 [18 3] 36 491 [2567]) ;i (i) syllabic and
lexical structures

IIHEEHIIIIHHE w, (o werphonelie

i (iii) edit operations

@@@@..@ .’.@. v (iv) b.OttOm.—]ayer phone-

like units
| | | 7z (v) phone-like unit
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Our approach uses whole-word segmental representations,
i.e. acoustic word embeddings [Kamper et al., IS'15; Kamper et al., TASLP'16]
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Acoustic word embeddings
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Y,

Acoustic word embeddings

x; € R? in d-dimensional space
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Acoustic word embeddings

x; € R? in d-dimensional space

Y,

Dynamic programming alignment has quadratic complexity, while
embedding comparison is linear time. Can use standard clustering.
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Unsupervised segmental Bayesian model

Speech waveform NWMWMMWWMWWMWMWMWN
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Unsupervised segmental Bayesian model
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Unsupervised segmental Bayesian model

Bayesian Gaussian mixture model
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Bayesian Gaussian mixture model
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Acoustic modelling
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Unsupervised segmental Bayesian model
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Bayesian Gaussian mixture model
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Speech waveform WN%WWWMW*MMWWW%

Acoustic modelling
Word segmentation
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Tflatten

Acoustic word embeddings: Downsampling
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e Simple embedding approach also
used in other studies
e.g. [Abdel-Hamid et al., 2013]

e Consider both MFCCs and cAE
features as frame-level function f,(+)

e cAE combines top-down learned
feature representations with
segmentation and clustering

22/35



Evaluation
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Metrics:

e Unsupervised word error rate (WER)

e Word token precision, recall, F-score: parsing quality

e Word type precision, recall, F-score: cluster quality

e Word boundary precision, recall, F-score: parsing quality
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Small-vocabulary segmentation and clustering
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Small-vocabulary segmentation and clustering

N

X
Q

Discrete HMM: [Walter et al., ASRU'13]. BayesSeg: [Kamper et al., TASLP'16].
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Small-vocabulary segmentation and clustering
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[Kamper et al., TASLP'16]
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Large-vocabulary: English

ZRSBaselineUTD (SI)

60 H UTDGraphCC (SI)
SyllableSegOsc™ (SD)
BayesSegMinDur-MFCC (SD)
BayesSegMinDur-cAE (SI)

N @ Q
&5& ’Q\Q 003;»

ZRSBaselineUTD: [Versteegh et al., 1S'15]. UTDGraphCC: [Lyzinski et al., IS"15].

SyllableSegOsct: [Risinen et al., 1S'15]. BayesSeg: [Kamper et al., arXiv'16].
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Large-vocabulary: Xitsonga
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ZRSBaselineUTD: [Versteegh et al., 1S'15]. UTDGraphCC: [Lyzinski et al., IS"15].

SyllableSegOsct: [Risinen et al., 1S'15]. BayesSeg: [Kamper et al., arXiv'16].
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The true (less rosy) picture

Word embedding from cluster 33 (— one)

Embeddings close to the above (non-word segments)

Embedding dimensions

28/35



Bottom-up constraints

e Minimum and maximum duration constraints
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Bottom-up constraints
e Minimum and maximum duration constraints

e Use unsupervised syllable boundary detection:

amplitude
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[Rasanen et al., 1S'15]
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Bottom-up constraints

Bayesian Gaussian mixture model

Embeddings x; = fe(y,,.;,) mmm ==

p(xilh7)

Acoustic frames y .,

T e e
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o o s

Speech waveform

Acoustic modelling

Word segmentation
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Bayesian Gaussian mixture model

Embeddings x; = fe(y,,.;,) mmm == u

Acoustic frames y .,

Speech waveform

Bottom-up constraints

p(xilh™)

ek

Tfe(')

Performs top-down segmentation while adhering to

bottom-up constraints

Acoustic modelling

Word segmentation
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Effect of using cAE features

English (%) Xitsonga (%)

Embeds.  Cluster ~ Speaker = Gender  Cluster  Speaker  Gender

MFCC 29.9 55.9 87.6 24.5 43.1 87.1
cAE
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Conclusions

Unsupervised speech processing benefits from

both top-down and bottom-up modelling
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Conclusions

Unsupervised speech processing benefits from

both top-down and bottom-up modelling

Correspondence autoencoder: Use top-down constraints with
bottom-up initialization to improve frame-level representations

Segmental Bayesian model: Top-down segmentation taking
bottom-up constraints into account

English and Xitsonga: Large-vocabulary multi-speaker data

cAE in BayesSeg: Improves cluster, speaker and gender purity
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Extending this work

Improve cAE using UTD and vice versa (with Sameer Bansal)
Improve unsupervised acoustic word embeddings [Chung et al., 1S'16]
Simplify BayesSeg so that it can be applied to larger corpora
Frame-based vs. segmental unsupervised models

Evaluation: What do we want to discover?
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Looking forward

e Building audio analysis tools for field linguists
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Looking forward

Building audio analysis tools for field linguists

Using weak labels, e.g. translations [Bansal et al., arXiv'16]
(with Sameer Bansal, Adam Lopez, Sharon Goldwater)

Language acquisition in humans and robots
Extending models to multiple modalities

(with Shane Settle, Karen Livescu,
Greg Shakhnarovich)




Code: https://github.com/kamperh
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