Unsupervised neural and Bayesian models for zero-resource speech processing

MIT CSAIL, 15 Nov. 2016

Herman Kamper University of Edinburgh; TTI at Chicago http://www.kamperh.com

TECHNICA Q BZOI ICH SCIENCE POLICY CARS GAMING & CULTURE TECHNOLOGY LAB – Microsoft releases open source toolkit used to build human-level speech recognition Microsoft wants to put machine learning everywhere.

PETER BRIGHT - 10/25/2016, 6:55 PM

PETER BRIGHT - 10/25/2016, 6:55 PM

May 28, 2015 12:54 pm ET

[Xiong et al., arXiv'16]

• Google Voice: English, Spanish, German, ..., Zulu (~50 languages)

[Xiong et al., arXiv'16]

- Google Voice: English, Spanish, German, ..., Zulu (~50 languages)
- Data: 2000 hours of labelled speech audio; ~350M words of text

[Xiong et al., arXiv'16]

- Google Voice: English, Spanish, German, ..., Zulu (~50 languages)
- Data: 2000 hours of labelled speech audio; \sim 350M words of text
- But: Can we do this for all 7000 languages spoken in the world?

Unsupervised speech processing

Developing unsupervised methods that can learn structure directly from raw speech audio, i.e. zero-resource technology

Unsupervised speech processing

Developing unsupervised methods that can learn structure directly from raw speech audio, i.e. zero-resource technology

Criticism: Always some data; semi-supervised problem

Unsupervised speech processing

Developing unsupervised methods that can learn structure directly from raw speech audio, i.e. zero-resource technology

Criticism: Always some data; semi-supervised problem

Reasons for purely unsupervised case:

- Modelling infant language acquisition
 [Räsänen, SpecCom'12]
- Language acquisition in robotics [Renkens and Van hamme, IS'15]
- Analysis of audio for unwritten languages [Besacier et al., SpecCom'14]
- New insights and models for speech processing [Jansen et al., ICASSP'13]

1. Unsupervised frame-level representation learning:

2. Unsupervised segmentation and clustering: How do we discover meaningful units in unlabelled speech?

[[]Park and Glass, TASLP'08]

[[]Park and Glass, TASLP'08]

[[]Park and Glass, TASLP'08]

[[]Park and Glass, TASLP'08]

Full-coverage segmentation and clustering

Full-coverage segmentation and clustering

Full-coverage segmentation and clustering

1. Unsupervised frame-level representation learning:

 Unsupervised segmentation and clustering: We focus on full-coverage segmentation and clustering

1. Unsupervised frame-level representation learning:

 Unsupervised segmentation and clustering: We focus on full-coverage segmentation and clustering

Our claim: Unsupervised speech processing benefits from both top-down and bottom-up modelling

Top-down and bottom-up modelling

Top-down: Use knowledge of higher-level units to learn about lower-level parts

Bottom-up: Piece together lower-level parts to get more complex higher-level structures

[Feldman et al., CCSS'09]

Unsupervised frame-level representation learning: The Correspondence Autoencoder

Unsupervised frame-level representation learning: The Correspondence Autoencoder

Micha Elsner

Daniel Renshaw

Aren Jansen

Sharon Goldwater

Supervised representation learning using DNN

Output: predict phone states

. . .

Input: speech frame(s) e.g. MFCCs, filterbanks

Supervised representation learning using DNN

Supervised representation learning using DNN

Output: predict phone states

Input: speech frame(s) e.g. MFCCs, filterbanks Phone classifier learned jointly

Unsupervised modelling:

No phone class targets to train network on

Feature extractor $f_a(\cdot)$ learned from data

Autoencoder (AE) neural network

Reconstruct input

Input speech frame

[Badino et al., ICASSP'14]

Autoencoder (AE) neural network

Reconstruct input

Input speech frame

• Completely unsupervised

- But purely bottom-up
- Can we use top-down information?

[Badino et al., ICASSP'14]

Autoencoder (AE) neural network

Reconstruct input

Input speech frame

[Badino et al., ICASSP'14]

- Completely unsupervised
- But purely bottom-up
- Can we use top-down information?
- Idea: Unsupervised term discovery

Weak top-down supervision: Align frames

[Jansen et al., ICASSP'13]
Weak top-down supervision: Align frames

[Jansen et al., ICASSP'13]

Weak top-down supervision: Align frames

[Jansen et al., ICASSP'13]

Autoencoder (AE)

Reconstruct input

Frame from other word in pair

Frame from other word in pair

Unsupervised feature extractor $f_a(\cdot)$

Frame from other word in pair

Combine **top-down** and **bottom-up** information

Unsupervised feature extractor $f_a(\cdot)$

[Kamper et al., ICASSP'15]

Intrinsic evaluation: Isolated word query task

Intrinsic evaluation: Isolated word query task

Extended: [Renshaw et al., IS'15] and [Yuan et al., IS'16]

Unsupervised segmentation and clustering: The Segmental Bayesian Model

Unsupervised segmentation and clustering: The Segmental Bayesian Model

Aren Jansen

Sharon Goldwater

Full-coverage segmentation and clustering

Full-coverage segmentation and clustering

Segmental modelling for full-coverage segmentation

Previous models use explicit subword discovery directly on speech features, e.g. [Lee et al., 2015]:

Segmental modelling for full-coverage segmentation

Previous models use explicit subword discovery directly on speech features, e.g. [Lee et al., 2015]:

Our approach uses whole-word segmental representations, i.e. acoustic word embeddings [Kamper et al., IS'15; Kamper et al., TASLP'16]

Acoustic word embeddings

Acoustic word embeddings

Acoustic word embeddings

Dynamic programming alignment has quadratic complexity, while embedding comparison is linear time. Can use standard clustering.

Speech waveform

Acoustic word embeddings: Downsampling

- Simple embedding approach also used in other studies
 e.g. [Abdel-Hamid et al., 2013]
- Consider both MFCCs and cAE features as frame-level function $f_a(\cdot)$
- cAE combines top-down learned feature representations with segmentation and clustering

Evaluation

Evaluation

Metrics:

- Unsupervised word error rate (WER)
- Word token precision, recall, F-score: parsing quality
- Word type precision, recall, F-score: cluster quality
- Word boundary precision, recall, F-score: parsing quality

Small-vocabulary segmentation and clustering

Small-vocabulary segmentation and clustering

Discrete HMM: [Walter et al., ASRU'13]. BayesSeg: [Kamper et al., TASLP'16].

Small-vocabulary segmentation and clustering

[Kamper et al., TASLP'16]

Large-vocabulary: English

ZRSBaselineUTD: [Versteegh et al., IS'15]. UTDGraphCC: [Lyzinski et al., IS'15]. SyllableSegOsc⁺: [Räsänen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16].

Large-vocabulary: Xitsonga

ZRSBaselineUTD: [Versteegh et al., IS'15]. UTDGraphCC: [Lyzinski et al., IS'15]. SyllableSegOsc⁺: [Räsänen et al., IS'15]. BayesSeg: [Kamper et al., arXiv'16].

The true (less rosy) picture

Embeddings close to the above (non-word segments)

Embedding dimensions

Bottom-up constraints

• Minimum and maximum duration constraints

Bottom-up constraints

- Minimum and maximum duration constraints
- Use unsupervised syllable boundary detection:

[Räsänen et al., IS'15]
Bottom-up constraints

Bottom-up constraints

bottom-up constraints

Effect of using cAE features

	English (%)			Xitsonga (%)		
Embeds.	Cluster	Speaker	Gender	Cluster	Speaker	Gender
MFCC	29.9	55.9	87.6	24.5	43.1	87.1
cAE	30.0	35.7	73.8	33.1	29.3	76.6

Summary and Conclusions

Conclusions

Unsupervised speech processing benefits from both top-down and bottom-up modelling

Conclusions

Unsupervised speech processing benefits from both top-down and bottom-up modelling

- **Correspondence autoencoder:** Use top-down constraints with bottom-up initialization to improve frame-level representations
- Segmental Bayesian model: Top-down segmentation taking bottom-up constraints into account
- English and Xitsonga: Large-vocabulary multi-speaker data
- cAE in BayesSeg: Improves cluster, speaker and gender purity

Extending this work

- Improve cAE using UTD and vice versa (with Sameer Bansal)
- Improve unsupervised acoustic word embeddings [Chung et al., IS'16]
- Simplify BayesSeg so that it can be applied to larger corpora
- Frame-based vs. segmental unsupervised models
- Evaluation: What do we want to discover?

• Building audio analysis tools for field linguists

- Building audio analysis tools for field linguists
- Using weak labels, e.g. translations [Bansal et al., arXiv'16] (with Sameer Bansal, Adam Lopez, Sharon Goldwater)

- Building audio analysis tools for field linguists
- Using weak labels, e.g. translations [Bansal et al., arXiv'16] (with Sameer Bansal, Adam Lopez, Sharon Goldwater)
- Language acquisition in humans and robots

- Building audio analysis tools for field linguists
- Using weak labels, e.g. translations [Bansal et al., arXiv'16] (with Sameer Bansal, Adam Lopez, Sharon Goldwater)
- Language acquisition in humans and robots
- Extending models to multiple modalities (with Shane Settle, Karen Livescu, Greg Shakhnarovich)

Code: https://github.com/kamperh

References I

- O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, "Deep segmental neural networks for speech recognition," in *Proc. Interspeech*, 2013.
- L. Badino, C. Canevari, L. Fadiga, and G. Metta, "An auto-encoder based approach to unsupervised learning of subword units," in *Proc. ICASSP*, 2014.
- S. Bansal, H. Kamper, S. J. Goldwater, and A. Lopez, "Weakly supervised spoken term discovery using cross-lingual side information," *arXiv preprint arXiv:1609.06530*, 2016.
- L. Besacier, E. Barnard, A. Karpov, and T. Schultz, "Automatic speech recognition for under-resourced languages: A survey," Speech Commun., vol. 56, pp. 85–100, 2014.
- Y.-A. Chung, C.-C. Wu, C.-H. Shen, and H.-Y. Lee, "Unsupervised learning of audio segment representations using sequence-to-sequence recurrent neural networks," *Proc. Interspeech*, 2016.
- N. H. Feldman, T. L. Griffiths, and J. L. Morgan, "Learning phonetic categories by learning a lexicon," in *Proc. CCSS*, 2009.
- A. Jansen, S. Thomas, and H. Hermansky, "Weak top-down constraints for unsupervised acoustic model training," in *Proc. ICASSP*, 2013.
- A. Jansen *et al.*, "A summary of the 2012 JHU CLSP workshop on zero resource speech technologies and models of early language acquisition," in *Proc. ICASSP*, 2013.

References II

- H. Kamper, M. Elsner, A. Jansen, and S. J. Goldwater, "Unsupervised neural network based feature extraction using weak top-down constraints," in *Proc. ICASSP*, 2015.
- H. Kamper, A. Jansen, and S. J. Goldwater, "Unsupervised word segmentation and lexicon discovery using acoustic word embeddings," *IEEE/ACM Trans. Audio, Speech, Language Process.*, vol. 24, no. 4, pp. 669–679, 2016.
- H. Kamper, S. J. Goldwater, and A. Jansen, "Fully unsupervised small-vocabulary speech recognition using a segmental Bayesian model," in *Proc. Interspeech*, 2015.
- H. Kamper, A. Jansen, and S. J. Goldwater, "A segmental framework for fully-unsupervised large-vocabulary speech recognition," *arXiv preprint arXiv:1606.06950*, 2016.
- C.-y. Lee, T. O'Donnell, and J. R. Glass, "Unsupervised lexicon discovery from acoustic input," *Trans. ACL*, vol. 3, pp. 389–403, 2015.
- K. Levin, K. Henry, A. Jansen, and K. Livescu, "Fixed-dimensional acoustic embeddings of variable-length segments in low-resource settings," in *Proc. ASRU*, 2013.
- V. Lyzinski, G. Sell, and A. Jansen, "An evaluation of graph clustering methods for unsupervised term discovery," in *Proc. Interspeech*, 2015.
- A. S. Park and J. R. Glass, "Unsupervised pattern discovery in speech," *IEEE Trans. Audio, Speech, Language Process.*, vol. 16, no. 1, pp. 186–197, 2008.

References III

- O. J. Räsänen, "Computational modeling of phonetic and lexical learning in early language acquisition: Existing models and future directions," *Speech Commun.*, vol. 54, pp. 975–997, 2012.
- O. J. Räsänen, G. Doyle, and M. C. Frank, "Unsupervised word discovery from speech using automatic segmentation into syllable-like units," in *Proc. Interspeech*, 2015.
- V. Renkens and H. Van hamme, "Mutually exclusive grounding for weakly supervised non-negative matrix factorisation," in *Proc. Interspeech*, 2015.
- D. Renshaw, H. Kamper, A. Jansen, and S. J. Goldwater, "A comparison of neural network methods for unsupervised representation learning on the Zero Resource Speech Challenge," in *Proc. Interspeech*, 2015.
- M. Versteegh, R. Thiollière, T. Schatz, X. N. Cao, X. Anguera, A. Jansen, and E. Dupoux, "The Zero Resource Speech Challenge 2015," in *Proc. Interspeech*, 2015.
- O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, "A hierarchical system for word discovery exploiting DTW-based initialization," in *Proc. ASRU*, 2013.
- W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig, "Achieving human parity in conversational speech recognition," *arXiv preprint arXiv:1610.05256*, 2016.

References IV

• Y. Yuan, C.-C. Leung, L. Xie, B. Ma, and H. Li, "Learning neural network representations using cross-lingual bottleneck features with word-pair information," in *Proc. Interspeech*, 2016.