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Advances in speech recognition

• Addiction to labels: 2000 hours transcribed speech audio;
∼350M/560M words text [Xiong et al., TASLP’17]

• Sometimes not possible, e.g., for unwritten languages
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“Zero-resource” speech processing

[Kamper et al., TASLP’16]
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Why learn without labels?

• Get insight into human language acquisition [Räsänen and Rasilo, ’15]

• Language acquisition in robots [Roy, ’99]; [Renkens and Van hamme, ’15]

• Analysis of audio for unwritten languages [Besacier et al., ’14]

• New insights and models for speech processing
[Jansen et al., ’13]

• but . . . what about context?
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Images as weak labels for speech

Can we use images as weak labels in low-resource settings?

Play

Maybe we cannot use this type of data for full ASR, but maybe it can be
used for other tasks?
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Map images and speech into common space

X

VGG

m
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d(yvis,yspch) distance

yvis yspch

[Harwath et al., NIPS’16]
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Retrieval in common (semantic) space

y ∈ RD in D-dimensional space

yvis

yspch

[Harwath et al., NIPS’16]
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Can we use (supervised) vision model to get labels?

X

VGG

m
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d(yvis,yspch) distance

yvis yspch

Cannot obtain textual labels for the speech using this model
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Word prediction from images and speech
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Images paired with untranscribed speech
We are still in this setting:

• We do not use any of the speech transcriptions during model training
(only for evaluation)

• But our resulting model can make bag-of-words (BoW) predictions
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Task 1: Spoken bag-of-words prediction

Input utterance Predicted BoW labels

Play
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Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach Play (one of top 10)
behind
bike
boys
large
play
sitting
yellow
young
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Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . . . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic
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Task 3: Semantic speech retrieval

burning

burning

fireWritten query:

burning

[Kamper et al., TASLP’19]
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Human (MTurk) evaluation

Keyword Top retrieved utterance Human label

ocean man falling off a blue surfboard in the ocean 5 / 5
snowy a skier catches air over the snow 5 / 5
bike a dirt biker rides through some trees 4 / 5
children a group of young boys playing soccer 4 / 5
field two white dogs running in the grass together 3 / 5
swimming a woman holding a young boy slide down a

water slide into a pool
3 / 5

carrying small dog running in the grass with a toy in its
mouth

2 / 5 ∗

large a group of people on a zig path through the
mountains

1 / 5 ∗

hair two women and a man smile for the camera 0 / 5 ∗
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Task 3: Semantic speech retrieval
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P@10

TextPrior

VisionTagPrior

VisionSpeechCNN

VisionCNN

SupervisedBoWCNN

TextWuP

TextParagram

19 / 35



Task 3: Semantic speech retrieval

0 20 40 60 80 100
P@10

TextPrior

VisionTagPrior

VisionSpeechCNN

VisionCNN

SupervisedBoWCNN

TextWuP

TextParagram

19 / 35



Task 3: Semantic speech retrieval
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But this model is trained for English?
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[Kamper et al., Interspeech’17]
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Task 4: Cross-lingual keyword spotting

Arapaho speech collection

(want to search)

Given English keyword:

‘Disease’

English speech collection

(want to search)

Given German keyword:

‘Hunde’

[Kamper and Roth, SLTU’18]
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Task 4: Cross-lingual keyword spotting
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2. Multimodal One-Shot Learning
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Unimodal one-shot learning and classification
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ŷ = ?

One-shot speech learning

– three

– one

– five

– two

– four

One-shot speech classification

S
u

p
p

or
t

se
t

(two)

Query:
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ŷ = ?

One-shot speech learning One-shot speech classification

S
u

p
p

or
t

se
t

– three

– one

– five

– two

– four

(two)

Query:
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Our approach to multimodal one-shot learning

• Requires within-modality distance metrics

• Can be done directly over features: DTW over speech, cosine over
image pixels

• Or distance metrics can be learned from background data

• Compare these on TIDigits (speech) paired with MNIST (images)
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Background data
Omniglot (no digits):

Isolated labelled words (no digits):
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Models for metric learning

Classifier network:

X

cri
cke

t
sta

nd
ing

lar
ge

Siamese network:

X2

distance

y2 = f(X2)

X1

y1 = f(X1)

d(y1,y2)
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Multimodal one-shot matching
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Multimodal five-shot matching
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Takeaways and future work
What to take away from this talk:

• Visual grounding is useful for dealing with unlabelled speech
• Some things are better when using visual grounding, e.g., one-shot

learning, semantic search (?)
• Some things are impossible without it, e.g., keyword prediction from

unlabelled speech

Future work:

• Visual grounding of speech paired with videos
• Language universal/agnostic vision systems
• Meta-learning and unsupervised background modelling for one-shot

learning
• Developing practical tools for low-resource languages
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http://www.kamperh.com/

https://github.com/kamperh/recipe_semantic_flickraudio

https://github.com/rpeloff/multimodal_one_shot_learning

http://www.kamperh.com/
https://github.com/kamperh/recipe_semantic_flickraudio
https://github.com/rpeloff/multimodal_one_shot_learning


Unimodal one-shot speech classification
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