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e Sometimes not possible, e.g., for unwritten languages
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but ... what about context?
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Images as weak labels for speech

Can we use images as weak labels in low-resource settings?
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Maybe we cannot use this type of data for full ASR, but maybe it can be
used for other tasks?
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Map images and speech into common space

distance
yvls yspch
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conv. max feedfwd
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[Harwath et al., NIPS'16]
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Retrieval in common (semantic) space

y € RP in D-dimensional space
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[Harwath et al., NIPS'16]
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Can we use superwsed) vision model to get labels?

distance
yv1s yspch _
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conv  max feedfwd
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Cannot obtain textual labels for the speech using this model
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Word prediction from images and speech
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[Kamper et al., Interspeech’17]
13/35



Word prediction from images and speech
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Word prediction from images and speech
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Word prediction from images and speech
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Word prediction from images and speech
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[Kamper et al., Interspeech’17]
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Word prediction from images and speech
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Images paired with untranscribed speech

We are still in this setting:
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e We do not use any of the speech transcriptions during model training
(only for evaluation)

e But our resulting model can make bag-of-words (BoW) predictions
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Input utterance

Predicted BoW labels

man on bicycle is doing tricks in an old
building

a little girl is climbing a ladder
a rock climber standing in a crevasse
a dog running in the grass around sheep

a man in a miami basketball uniform
looking to the right

bicycle, bike, man, riding,
wearing

child, girl, little, young
climbing, man, rock
dog, field, grass, running

ball, basketball, man,
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Task 2: Keyword spotting

Keyword

Example of matched utterance

Type

beach
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boys
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sitting
yellow
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(one of top 10)
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Task 2: Keyword spotting

Keyword Example of matched utterance Type
beach a boy in a yellow shirt is walking on a beach ... correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic
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Task 3: Semantic speech retrieval

burning ‘ l |

burning

Written query:
burning

[Kamper et al., TASLP'19]
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Human (MTurk) evaluation

Keyword  Top retrieved utterance Human label

ocean man falling off a blue surfboard in the ocean 5/5

snowy a skier catches air over the snow 5/5

bike a dirt biker rides through some trees 4/5

children a group of young boys playing soccer 4/5

field two white dogs running in the grass together 3/5

swimming a woman holding a young boy slide down a 3/5
water slide into a pool

carrying small dog running in the grass with a toy inits 2 /5 %
mouth

large a group of people on a zig path through the 1/5x
mountains

hair two women and a man smile for the camera 0/5x
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But this model is trained for English?

conv. max feedfwd

max

[Kamper et al., Interspeech’17]
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Task 4: Cross-lingual keyword spotting

Given English keyword:

[Kamper and Roth, SLTU'18]
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Task 4: Cross-lingual keyword spotting

German (text) tags Cross-lingual keyword spotter
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[Kamper and Roth, SLTU'18]
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Unimodal one-shot learning and classification

ﬂmﬂv«» — three
WWW - one
WW ~ five
wwwmmw — two
AhwWWWWWW_ — four

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Unimodal one-shot learning and classification

ﬂmﬂv«» — three
WWW - one
WW ~ five
wwwmmw — two
ANWWM — four

Query:

<
Il
~

(two)

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Unimodal one-shot learning and classification

W — three

*WM e T Query:
WW  five »».WWW
- )
JW — four

One-shot speech learning | One-shot speech classification

Nad¥
I
~

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Unimodal one-shot learning and classification

W — five
~- - o
i~ four

One-shot speech learning | One-shot speech classification

Query:

Nad¥
Il
~J

Support set

(two)

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Unimodal one-shot learning and classification

—«WMW»~ — five
i o
_ *WWW“ ~ four

One-shot speech learning

Support set

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]

One-shot speech classification

27/35



Unimodal one-shot learning and classification

W — five '*HMW»MW y=7
=iy - oo
_ *WWW“ ~ four

One-shot speech learning | One-shot speech classification

Support set

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Unimodal one-shot learning and classification

W — five '*HMW»MW y = two
=iy - oo
_ *WWW“ ~ four

One-shot speech learning | One-shot speech classification

Support set

[Fei-Fei et al., PAMI'06]; [Lake et al., CogSci'14]
27/35



Multimodal one-shot learning and matching

) T

) Query: )
Al [ 1] e 3
§ J— (two) —
e | S (
o ————— —————
U?) SR SR
~fi- | 2 ¢
————— ————

SR SR

i} i}

Multimodal one-shot learning Multimodal one-shot matching

[Eloff et al., arXiv'18]
28 /35



Multimodal one-shot learning and matching

Matching set

) T

) Query: )
Al [ 1] e 3
§ J— (two) —
e | S (
o ————— —————
U:-; SR SR
~i- | 2 ¢
————— ————

SR SR

i} i}

Multimodal one-shot learning Multimodal one-shot matching

[Eloff et al., arXiv'18]
28 /35



Multimodal one-shot learning and matching

Matching set

) Query: )

L e (1 : 3
§ J— (two) —
e | S (
o - ? —
u:-; S ) S
i | 2 a
————— ————

SR SR

i} i}

Multimodal one-shot learning Multimodal one-shot matching

[Eloff et al., arXiv'18]
28 /35



Our framework
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Our framework
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Support set

Multimodal one-shot learning
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Our approach to multimodal one-shot learning

e Requires within-modality distance metrics

Can be done directly over features: DTW over speech, cosine over

image pixels

Or distance metrics can be learned from background data

Compare these on TIDigits (speech) paired with MNIST (images)
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Background data

Omniglot (no digits):
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Models for metric learning

Classifier network:
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Models for metric learning

Classifier network: Siamese network:

d(y1,y,) |distance
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Multimodal one-shot matching

DTW + Pixels

FFNN Classifier

CNN Classifier

Siamese CNN (offline)

Siamese CNN (online)
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Multimodal five-shot matching

DTW + Pixels

FENN Classifier

CNN Classifier

Siamese CNN (offline)

Siamese CNN (online)
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Takeaways and future work
What to take away from this talk:

e Visual grounding is useful for dealing with unlabelled speech

e Some things are better when using visual grounding, e.g., one-shot
learning, semantic search (?)

e Some things are impossible without it, e.g., keyword prediction from
unlabelled speech
Future work:
e Visual grounding of speech paired with videos
e Language universal/agnostic vision systems

e Meta-learning and unsupervised background modelling for one-shot
learning

e Developing practical tools for low-resource languages
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Unimodal one-shot speech classification

DTW

FFNN Classifier

CNN Classifier

Siamese CNN (offline)

Siamese CNN (online)
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Accuracy (%)
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