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e |s there a chat box?

e Can you see my pointer?

e Can you hear this:



Learning acoustic units and words from
unlabelled speech (with a bit of vision)
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Q' Applications such as non-parallel voice conversion
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Experience Grounds Language
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You can’t learn language ...
... from the radio (internet). =~ WS2 C WS3

A learner cannot be said to be in WS3
if it can perform its task without sensory
perception such as visual, auditory, or
tactile information.

... from a television. WS3 Cc WS4

A learner cannot be said to be in WS4
if the space of actions and consequences
of its environment can be enumerated.

... by yourself. WS4 C WS5

A learner cannot be said to be in WS5 if
its cooperators can be replaced with clev-
erly pre-programmed agents to achieve
the same goals.
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You can’t learn language ...

... from the radio (internet). =~ WS2 C WS3 4
But what can (and should) we
A learner cannot be said to be in WS3

if it can perform its task without sensory learn at these different levels?
perception such as visual, auditory, or
tactile information.

... from a television. WS3 Cc WS4

uw WMWW
AWl

At

A learner cannot be said to be in WS4
if the space of actions and consequences
of its environment can be enumerated.

... by yourself. WS4 C WS5

A learner cannot be said to be in WS5 if
its cooperators can be replaced with clev-
erly pre-programmed agents to achieve
the same goals.




Levels of language learning
(for word and phone acquisition)

/41



Levels of language learning
(for word and phone acquisition)

1. What can we learn from unlabelled speech audio, i.e. radio?

/41



Levels of language learning
(for word and phone acquisition)

1. What can we learn from unlabelled speech audio, i.e. radio?

2. What can we learn from co-occurring (grounding) signals like
vision, i.e. television?

41



Levels of language learning
(for word and phone acquisition)

. What can we learn from unlabelled speech audio, i.e. radio?

. What can we learn from co-occurring (grounding) signals like
vision, i.e. television?

. What can we learn from interaction /feedback from our
environment and other “agents”?

41



Levels of language learning
(for word and phone acquisition)

. What can we learn from unlabelled speech audio, i.e. radio?
— Part 1

. What can we learn from co-occurring (grounding) signals like
vision, i.e. television?

. What can we learn from interaction /feedback from our
environment and other “agents”?



Levels of language learning
(for word and phone acquisition)

. What can we learn from unlabelled speech audio, i.e. radio?
— Part 1

. What can we learn from co-occurring (grounding) signals like
vision, i.e. television? — Part 2

. What can we learn from interaction /feedback from our
environment and other “agents”?



1. Vector-quantised neural networks for
unsupervised acoustic unit discovery



1. Vector-quantised neural networks for
unsupervised acoustic unit discovery

v

Benjamin Leanne
van Niekerk Nortje




1. Vector-quantised neural networks for
unsupervised acoustic unit discovery

D O

Benjamin Leanne
van Niekerk Nortje

Van Niekerk et al., “Vector-quantized neural networks for acoustic unit discovery in the ZeroSpeech 2020 challenge,”
Interspeech, 2020.
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Van den Oord et al., “Neural discrete representation learning,” NeurlPS, 2017.
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Our contribution

We propose and compare two models for unsupervised acoustic unit
discovery:

Van Niekerk et al., “Vector-quantized neural networks for acoustic unit discovery in the ZeroSpeech 2020 challenge,”
Interspeech, 2020.
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it A

Dz ey <—Em|be ’ VQ-VAE: A vector-quantised

variational autoencoder
VQ layer Inspired by:

E E E E E E E Chorowski, et al., “Unsupervised speech representation

learning using wavenet autoencoders,” TASLP, 2019.

Speaker ID

Encoder

Van Niekerk et al., “Vector-quantized neural networks for acoustic unit discovery in the ZeroSpeech 2020 challenge,”
Interspeech, 2020.
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Our contribution

We propose and compare two models for unsupervised acoustic unit
discovery:

VQ-CPC: Combining vector E
quantisation with contrastive }
predictive coding E
Inspired by:

|
Van den Oord, et al., “Representation learning with
contrastive predictive coding,” arXiv, 2018.

Van Niekerk et al., “Vector-quantized neural networks for acoustic unit discovery in the ZeroSpeech 2020 challenge,”
Interspeech, 2020.

11/41



Vector-quantised variational autoencoder

- -
=

12/41



Vector-quantised variational autoencoder

il - ~—————

Minimise
reconstruction
loss

12/41



Vector-quantised variational autoencoder

Autoregressive RNN -
Minimise
reconstruction

IIIIIII o

12/41



Vector-quantised variational autoencoder

- - <————
Autoregressive RNN -

I I I I I I I Minimise

Information bottleneck _ reconstruction

IIIIIII o

_

12/41



Vector-quantised variational autoencoder

il - ~—————

Autoregressive RNN

I I I I I I I Speaker ID | Minimise

Information bottleneck _ reconstruction

IIIIIII o

_

12/41



Vector-quantised contrastive predictive coding
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Vector-quantised contrastive predictive coding
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Vector-quantised contrastive predictive coding
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Example conversions

Example 1:
e Source:
e Converted:
e Target:

Example 2:
e Source:
e Converted:
e Target:
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Chen and Hain, “Unsupervised acoustic unit representation learning for voice conversion using WaveNet auto-encoders,”
Interspeech, 2020.
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Evaluation: Intelligibility
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VQ-CPC codes
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Levels of language learning
(for word and phone acquisition)

. What can we learn from unlabelled speech audio, i.e. radio?
— Part 1

. What can we learn from co-occurring (grounding) signals like
vision, i.e. television?

. What can we learn from interaction /feedback from our
environment and other “agents”?
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from images and speech

Herman Leanne
Engelbrecht Nortje

Nortje and Kamper, “Unsupervised vs. transfer learning for multimodal one-shot matching of speech and images,”
Interspeech, 2020.
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Unimodal one-shot learning and classification

W — three
*‘WMWWW — one
W — five
MWWWW - two
W — four

Fei-Fei et al., “One-shot learning of object categories,” TPAMI, 2006.
Lake et al., “One-shot learning of generative speech concepts,” CogSci, 2014.
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Fei-Fei et al., “One-shot learning of object categories,” TPAMI, 2006.
Lake et al., “One-shot learning of generative speech concepts,” CogSci, 2014.
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Unimodal one-shot learning and classification
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One-shot speech learning | One-shot speech classification

Support set

Fei-Fei et al., “One-shot learning of object categories,” TPAMI, 2006.
Lake et al., “One-shot learning of generative speech concepts,” CogSci, 2014.
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Multimodal one-shot learning and matching
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Multimodal one-shot learning Multimodal one-shot matching

Eloff et al., “Multimodal one-shot learning of speech and images,” ICASSP, 2019
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Multimodal one-shot learning and matching
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Two-step (indirect) multimodal one-shot approach
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Two-step (indirect) multimodal one-shot approach

Matching set
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Eloff et al., “Multimodal one-shot learning of speech and images,” ICASSP, 2019.
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Two-step (indirect) multimodal one-shot approach

e Requires within-modality speech-to-speech and image-to-image
distance metrics

e Baseline: DTW over speech, cosine over image pixels

e Or representations/distance metrics can be learned
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Two-step (indirect) multimodal one-shot approach

Requires within-modality speech-to-speech and image-to-image
distance metrics

Baseline: DTW over speech, cosine over image pixels

Or representations/distance metrics can be learned

Compare two learning methodologies on TIDigits (speech) paired
with MNIST (images)

Nortje and Kamper, “Unsupervised vs. transfer learning for multimodal one-shot matching of speech and images,”
Interspeech, 2020.
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1. Transfer learning from labelled background data
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Omniglot (no digits):

TINTCTH 1T e S NCcOUVTO S ¢ LYNWOPEAT 2% 6& 413
SUNYTIMHI a2 s abCRLL 70) 53 0 3 VMAT 383« v
971D " H A Ay S%Yﬂjdmj focyswdNo 2esxwm®
SE{TE'GH@;JESSQ P =2 Mm@ 2l 8 F e@ma2BJI L € E"]—J’NZ’)” wa 9
IJEFC8UbSwgdeEmatinaNTdORIAET 4571 SYSBRPX
LT BHBDA Vbl Tm 0@ Qdaxms x 0 RAL x rTWZY8E H
GOGQAGIP LN ATTT Igmu Tud I ga™r ¥Yr 2 Jr INOE
Isolated labelled words (no digits):
aarcHivark cricket
walker WW\ MW | .W W ““ WMW
cricket ky ardvark
bail wta
,M:WWM 4‘ H]H] m NWW ‘”.j. bail

walke

MWWMW U
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1. Supervised models for transfer learning

acoustic word

embedding \
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aardvark
absolutely
bail
cricket

writing
yearning
zoologist
zulu
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1. Supervised models for transfer learning

acoustic word aardvark

embedding \ abb.slolutely
ai
cricket

writing
yearning

o zoologist
zulu

Settle and Livescu, “Discriminative acoustic word embeddings: Recurrent neural network-based approaches,” SLT, 2016.

N
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2. Unsupervised learning from unlabelled
in-domain data
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2. Unsupervised learning from unlabelled
in-domain data
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Unlabelled speech Unlabelled images
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2. Unsupervised models

il

AE-RNN

acoustic word
embedding

-

Chung et al., “Unsupervised learning of audio segment representations using sequence-to-sequence recurrent neural networks,”
Interspeech, 2016.
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2. Unsupervised models

il

CAE-RNN

Kamper, “Truly unsupervised acoustic word embeddings using weak top-down constraints in encoder-decoder models,”
ICASSP, 2019.

z
‘\acoustic word

embedding
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Evaluation: Multimodal one-shot matching
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Evaluation: Multimodal one-shot matching
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Nortje and Kamper, “Unsupervised vs. transfer learning for multimodal one-shot matching of speech and images,”
Interspeech, 2020.
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Evaluation: Multimodal five-shot matching
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Nortje and Kamper, “Unsupervised vs. transfer learning for multimodal one-shot matching of speech and images,”
Interspeech, 2020.
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3. A direct approach?
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3. A direct approach?

Image/Caption Similarity Score

O

0 y Dot Product [
d d
Mean or max pooling T
ﬁ across entire caption + L2 =
normalizati 1024 filters
[ Linear Projection ]j

Convolution of width 25
+ RelLU

[ VGG 16 (No softmax) ﬂ 512 filters

Convolution of width 25 + max pooling
ﬁ of width 4 and stride 2 + ReLU

r

!
: H' 64 filters
L2

Convolution across 5 frames and
40 filterbanks + max pooling of
width 4 and stride 2 + ReLU

Harwath et al., “Unsupervised learning of spoken language with visual context,” NeurlPS, 2016.
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3. Pair mining for a direct model
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3. Pair mining for a direct model

/\*W“ 247 48
ww JMWWW - q4(-)-, (‘,Jq
WW»MM - 5] (e oy
WWW i (2] solﬁ?*

3

Unlabelled speech NW Unlabelled images

Support set

38 /41



3. Pair mining for a direct model
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-
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Unlabelled speech W Unlalilled images

Support set
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Involves combining (1) transfer learning and (2) unsupervised learning
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Evaluation: Multimodal five-shot matching
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Summary and conclusion



Summary and looking forward

. What can we learn from unlabelled speech audio, i.e. radio?
— Part 1

. What can we learn from co-occurring (grounding) signals like
vision, i.e. television? — Part 2

. What can we learn from interaction /feedback from our
environment and other “agents”?

41 /41



Summary and looking forward
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https://github.com/bshall/ZeroSpeech/
https://github.com/bshall/VectorQuantizedCPC/

https://github.com/LeanneNortje/multimodal_speech-image_matching/
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