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Success in automatic speech recognition (ASR)

[Xiong et al., arXiv’16]; [Saon et al., arXiv’17]
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State-of-the-art speech recognition



Supervised speech recognition

i had to think of some example speech

since speech recognition is really cool
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Feature extraction for speech processing
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Feature extraction for speech processing
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Name these networks

Image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Name these networks

x(i)

y(i)
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Name these networks

Image: http://deeplearning.net/tutorial/lenet.html
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Name these networks

p(x(1),x(2), . . . ,x(N))|[ih])
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Hidden Markov models (HMMs)
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Hidden Markov models (HMMs)
p(X|[ih])
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(thousands of HMM states) with pronunciation dictionary and language
model in (very big) decoder network (finite state machine).
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Back to today: End-to-end speech recognition

[Chan et al., arXiv’15]
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End-to-end speech recognition

[Chan et al., arXiv’15]
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Why did we talk about HMMs?

• Could we use a standard
feedforward deep neural
network (DNN) for ASR?

• Idea: Use HMM to obtain
frame alignments for DNN!

• Hybrid model: DNN-HMM

• Can be seen as
representation learning
trained jointly with classifier x(i)

y(i)
s1 s2 . . . s9000
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What about convolutional neural networks?
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Is end-to-end the best?

• End-to-end models are easier to implement1

• But, do they give state-of-the-art performance?

• What do you think CLDNN-HMM2 stands for?

1https://github.com/espnet/espnet 2[Sainath et al., ICASSP’15]

20 / 40

https://github.com/espnet/espnet


Is end-to-end the best?

• End-to-end models are easier to implement1

• But, do they give state-of-the-art performance?

• What do you think CLDNN-HMM2 stands for?

1https://github.com/espnet/espnet 2[Sainath et al., ICASSP’15]

20 / 40

https://github.com/espnet/espnet


Is end-to-end the best?

• End-to-end models are easier to implement1

• But, do they give state-of-the-art performance?

• What do you think CLDNN-HMM2 stands for?

1https://github.com/espnet/espnet 2[Sainath et al., ICASSP’15]
20 / 40

https://github.com/espnet/espnet


Is end-to-end the best?

• End-to-end models are easier to implement1

• But, do they give state-of-the-art performance?

• What do you think CLDNN-HMM2 stands for?

1https://github.com/espnet/espnet 2[Sainath et al., ICASSP’15]
20 / 40

https://github.com/espnet/espnet


Is end-to-end the best?

• End-to-end models are easier to implement1

• But, do they give state-of-the-art performance?

• What do you think CLDNN-HMM2 stands for?

1https://github.com/espnet/espnet 2[Sainath et al., ICASSP’15]
20 / 40

https://github.com/espnet/espnet


Summary: Speech recognition is important, but. . .

• Very important engineering endeavour:
information access, illiteracy, assistance for the disabled

• But it is more: speech and language makes us human

• Engineering decisions can tell us something about how we perceive
the world: saw how structure helps in speech recognition models

• And studies about how we perceive the world can tell us something
about better engineering decisions
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Rant 1: Do we always need/have ASR?

Examples of non-ASR speech processing



What if we do not have supervision?

• Google Voice: English, Spanish, German, . . . , Zulu (∼50 languages)

• Data: 2000 hours transcribed speech audio; ∼350M/560M words text

• Can we do this for all 7000 languages spoken in the world?

• Many of these languages are endangered and unwritten

23 / 40



Example 1: Query-by-example search

Spoken query:Spoken query:Spoken query:Spoken query:

Useful speech system, not requiring any transcribed speech

[Jansen and Van Durme, Interspeech’12]
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Example 2: Linguistic and cultural documentation

http://www.stevenbird.net/
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Example 3: Learning robots to understand speech

[Janssens and Renkens, 2014]; [Renkens et al., SLT’14]
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Rant 2: Taking inspiration from humans

Examples of local work



Supervised speech recognition

i had to think of some example speech

since speech recognition is really cool

Can we acquire language from audio alone?
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Full-coverage segmentation and clustering
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Unsupervised segmental Bayesian model
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Listen to discovered clusters

• Small-vocabulary cluster 45: Play

• Large-vocabulary English cluster 1214: Play

• Large-vocabulary Xitsonga cluster 629: Play
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Arrival



Using images for grounding language

Consider images paired with unlabellel spoken captions:

Play
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Map images and speech into common space

X

VGG

m
ax

co
n
v

m
ax

fe
ed
fw
d

d(yvis,yspch) distance

yvis yspch

[Harwath et al., NIPS’16]
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Visually grounded keyword spotting

Keyword Example of matched utterance Type

beach Play (one of top 10)
behind
bike
boys
large
play
sitting
yellow
young

[Kamper et al., Interspeech’17]
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Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave
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Visually grounded keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike
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large
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sitting
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Keyword Example of matched utterance Type
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Keyword Example of matched utterance Type
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Visually grounded keyword spotting

Keyword Example of matched utterance Type
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Keyword Example of matched utterance Type
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Visually grounded keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
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Visually grounded keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
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Visually grounded keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . . . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic

[Kamper et al., Interspeech’17]
37 / 40



Summary and conclusion



What did we chat about today?

• Supervised speech recognition: From HMMs all the way to CLDNNs

• Structure is still important in speech recognition

• Saw three examples of models that do not require ASR

• Looked at local work taking inspiration from humans
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What’s next (specifically for us)?

• Still many many unsolved core machine learning problems in
unsupervised and low-resource speech processing

• Building speech search systems for (South) African languages

• Can some of these approaches be used in other machine learning
domains? E.g. can vision tell us something about speech?

• What can we learn about language acquisition in humans?

• Language acquisition in robots

• Main take-away: Look at machine learning
problems from different perspectives and angles
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http://www.kamperh.com/

https://github.com/kamperh

http://www.kamperh.com/
https://github.com/kamperh


Backup slides



Acoustic word embeddings (AWê)

Acoustic word embeddings x ∈ RD

fe(Y1)

fe(Y2)

Y2

Y1

x1

x2

[Levin et al., ASRU’13]
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Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., PatRec’93]

Y1

x1 = f(Y1)

Y2

x2 = f(Y2)

Y1

x1 = f(Y1)

Y2

x2 = f(Y2)

distancel(x1,x2)

[Kamper et al., ICASSP’15]
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Retrieval in common (semantic) space

y ∈ RD in D-dimensional space

yvis

yspch

[Harwath et al., NIPS’16]
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Word prediction from images and speech
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(BoW) classifier

[Kamper et al., Interspeech’17]
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I.e., a spoken bag-of-words
(BoW) classifier

[Kamper et al., Interspeech’17]
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