(Outrageously^{*}) Low-Resource Speech Processing

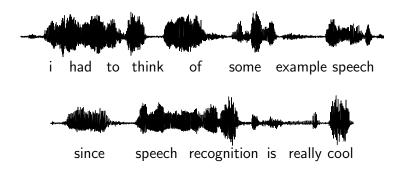
NLP @ Deep Learning Indaba, Kenya, 2019

Herman Kamper

E&E Engineering, Stellenbosch University, South Africa http://www.kamperh.com/

(Outrageously^{*}) Low-Resource Speech Processing

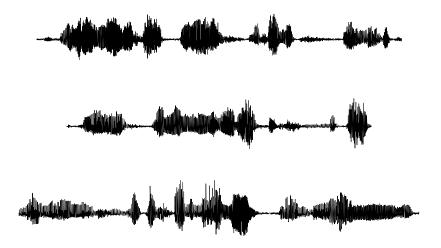
NLP @ Deep Learning Indaba, Kenya, 2019

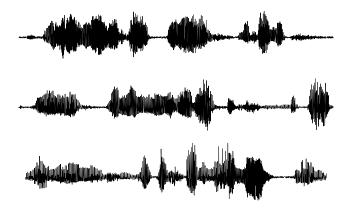

Herman Kamper

E&E Engineering, Stellenbosch University, South Africa http://www.kamperh.com/

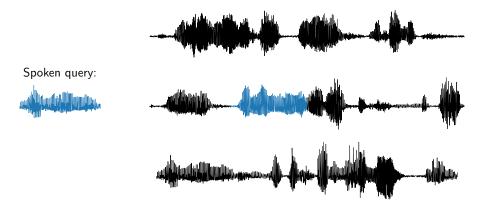
*Title plagiarised from Jade Abbott's DLI talk

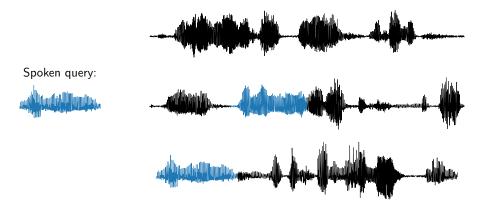
Supervised speech recognition

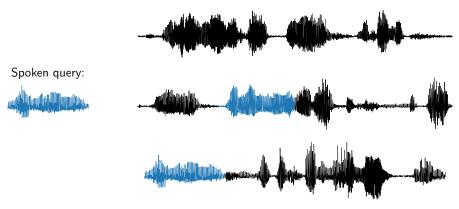



Unsupervised ("zero-resource") speech processing

My problem: What can we learn if we do not have any labels?


Unsupervised ("zero-resource") speech processing


My problem: What can we learn if we do not have any labels?



Useful speech system, not requiring any transcribed speech

 $\label{eq:outrageously low-resource} Outrageously low-resource = \\ unsupervised speech processing (outline)$

Outrageously low-resource = unsupervised speech processing (outline)

• Why is this problem so important?

Will try to convince you that this is (one of) the most fundamental machine learning problems, with real impactful applications

Outrageously low-resource = unsupervised speech processing (outline)

• Why is this problem so important?

Will try to convince you that this is (one of) the most fundamental machine learning problems, with real impactful applications

• What are the key ideas needed to tackle this problem? Hopefully you will get some useful tools

Outrageously low-resource = unsupervised speech processing (outline)

• Why is this problem so important?

Will try to convince you that this is (one of) the most fundamental machine learning problems, with real impactful applications

- What are the key ideas needed to tackle this problem? Hopefully you will get some useful tools
- What is still missing?

What are the open problems and research questions which still need to be solved (according to me)

Why is this problem so important?

Problems in unsupervised speech processing:

Problems in unsupervised speech processing:

- Learning useful representations from unlabelled speech
- Segmenting, clustering and discovering longer-spanning (word- or phrase-like) patterns

Problems in unsupervised speech processing:

- Learning useful representations from unlabelled speech
- Segmenting, clustering and discovering longer-spanning (word- or phrase-like) patterns
- Combined problem of perception, structure, continuous and discrete variables

Problems in unsupervised speech processing:

- Learning useful representations from unlabelled speech
- Segmenting, clustering and discovering longer-spanning (word- or phrase-like) patterns
- Combined problem of perception, structure, continuous and discrete variables

"The goal of machine learning is to develop methods that can automatically detect patterns in data \dots " — Murphy

"Extract important patterns and trends, and understand what the data says"" — Hastie, Tibshirani, Friedman

"The problem of searching for patterns in data is ... fundamental ..." — Bishop

Problems in unsupervised speech processing:

- Learning useful representations from unlabelled speech
- Segmenting, clustering and discovering longer-spanning (word- or phrase-like) patterns
- Combined problem of perception, structure, continuous and discrete variables

"The goal of machine learning is to develop methods that can automatically detect patterns in data \dots " — Murphy

"Extract important patterns and trends, and understand what the data says'" — Hastie, Tibshirani, Friedman

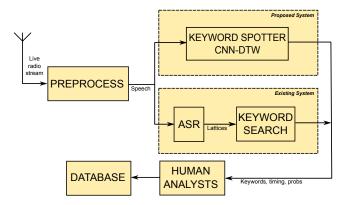
"The problem of searching for patterns in data is . . . fundamental . . . " — Bishop

"Imagine a world in which every single human being can freely share in the sum of all knowledge."

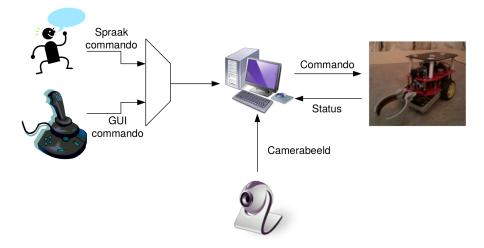
"Imagine a world in which every single human being can freely share in the sum of all knowledge."

- Mission statement stolen from Laura Martinus

"Imagine a world in which every single human being can freely share in the sum of all knowledge."


- Mission statement stolen from Laura Martinus

- Who stole it from the Wikimedia Foundation



UN Pulse Lab, Kampala

https://www.kpvu.org/post/turn-tune-transcribe-un-develops-radio-listening-tool

[Saeb et al., 2017; Menon et al., 2018]

Linguistic and cultural documentation and preservation:

http://www.stevenbird.net/

Academics team up to save dying languages

25/3/2014

A beautifully crafted documentary about Aikuma by Thom Cookes which aired on ABC's

Tweet 0

program The World. This video included a segment about Lauren Gawne and her work on Kagate (Nepal).

http://www.stevenbird.net/

f Like < 0

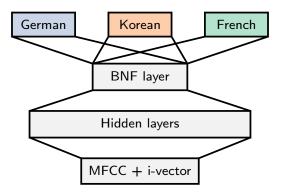
3. Understanding human language acquisition

- Cognitive modelling: Try to uncover learning mechanisms in humans
- A model of human language acquisition: Can probe easily
- Example applications:
 - Identify hearing loss early
 - Predict learning difficulties
 - How much do we need to talk to infants?

https://bergelsonlab.com/seedlings/

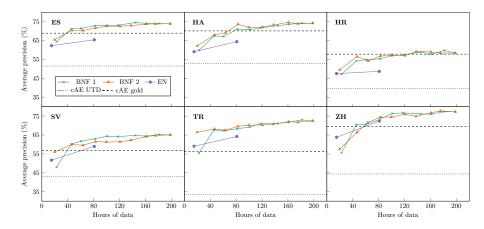
Three ideas to tackle these problems

• Pushing the model in a direction: inductive bias, Bayesian priors, regularisation, data augmentation


- Pushing the model in a direction: inductive bias, Bayesian priors, regularisation, data augmentation
- In unsupervised learning this is all we have

- Pushing the model in a direction: inductive bias, Bayesian priors, regularisation, data augmentation
- In unsupervised learning this is all we have
- We know a lot about languages in general

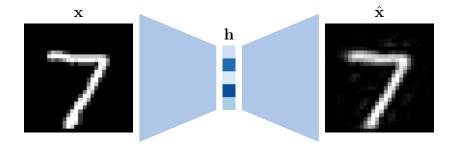
- Pushing the model in a direction: inductive bias, Bayesian priors, regularisation, data augmentation
- In unsupervised learning this is all we have
- We know a lot about languages in general
- Example: Although speech sounds are produced differently in different languages, there are aspects which are shared


1. Build in the (domain) knowledge we have

Share representations across languages:

[Hermann and Goldwater, 2018; Hermann et al., 2018; https://arxiv.org/abs/1811.04791]

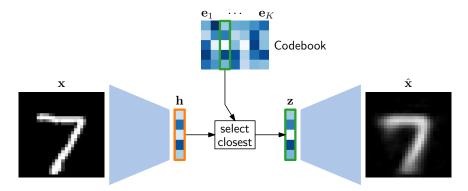
1. Build in the (domain) knowledge we have



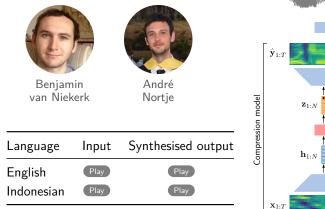
[Hermann and Goldwater, 2018; Hermann et al., 2018; https://arxiv.org/abs/1811.04791]

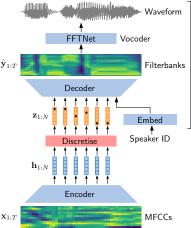
2. Compression

2. Compression

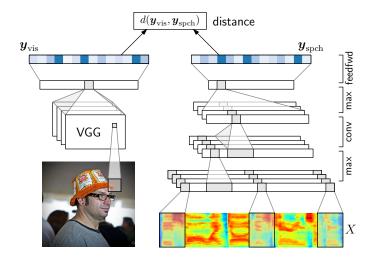

Autoencoder:

Loss for single training example: $J = ||\mathbf{x} - \hat{\mathbf{x}}||^2$


2. Compression


Vector-quantised variational autoencoder (VQ-VAE):

$$\mathbf{z} = \mathbf{e}_k \text{ where } k = \operatorname{argmin}_{j=1}^K ||\mathbf{h} - \mathbf{e}_j||^2$$
$$J = \alpha ||\mathbf{x} - \hat{\mathbf{x}}||^2 + ||\operatorname{sg}(\mathbf{h}) - \mathbf{e}_k||^2 + \beta ||\mathbf{h} - \operatorname{sg}(\mathbf{e}_k)||^2$$


2. Compression: An example from our group

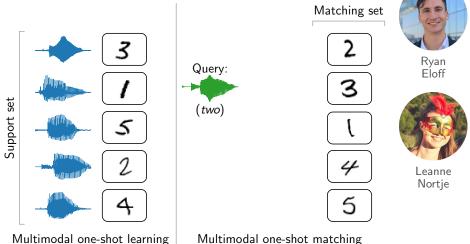
https://arxiv.org/abs/1904.07556

Symbol-to-speech module

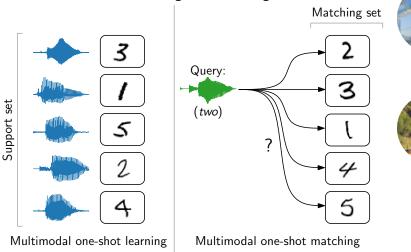
[Harwath et al., NeurIPS'16]

One-shot multimodal learning and matching:

Ryan Eloff


Leanne Nortje

One-shot multimodal learning and matching:


[Eloff et al., ICASSP'19; https://arxiv.org/abs/1811.03875]

One-shot multimodal learning and matching:

[Eloff et al., ICASSP'19; https://arxiv.org/abs/1811.03875]

One-shot multimodal learning and matching:

[Eloff et al., ICASSP'19; https://arxiv.org/abs/1811.03875]

Ryan

Eloff

Leanne Nortje

The most important missing parts

• Engineering/technical: Generic ways to incorporate domain knowledge

- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?

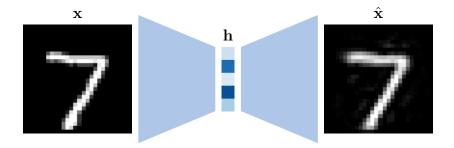
- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?
- What are useful, practical applications that we should be working on?

- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?
- What are useful, practical applications that we should be working on? (Instead of just spending time in the shower)

- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?
- What are useful, practical applications that we should be working on? (Instead of just spending time in the shower)
- Real test cases on real low-resource languages

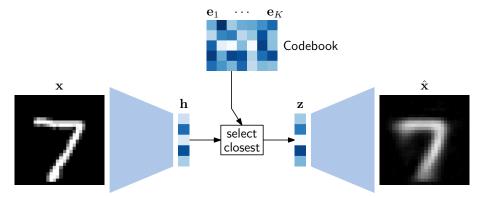
- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?
- What are useful, practical applications that we should be working on? (Instead of just spending time in the shower)
- Real test cases on real low-resource languages

"... while the authors did make an effort to artificially limit the data availability, I don't think the main claims of the paper ... is generalizable to actual low-resource languages ..." — Reviewer


- Engineering/technical: Generic ways to incorporate domain knowledge
- Scientific: What are the mechanisms used for learning language?
- What are useful, practical applications that we should be working on? (Instead of just spending time in the shower)
- Real test cases on real low-resource languages

"... while the authors did make an effort to artificially limit the data availability, I don't think the main claims of the paper ... is generalizable to actual low-resource languages ..." — Reviewer

Getting data for these test cases


http://www.kamperh.com/ https://github.com/kamperh/

Compression: Autoencoder

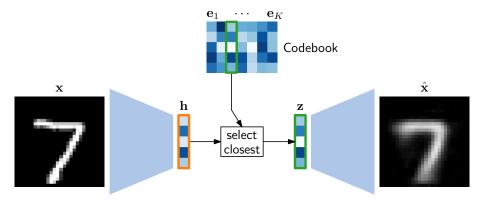
Loss for single training example: $J = ||\mathbf{x} - \hat{\mathbf{x}}||^2$

Vector-quantised variational autoencoder (VQ-VAE)

$$\mathbf{z} = \mathbf{e}_k$$
 where $k = \operatorname{argmin}_{j=1}^K ||\mathbf{h} - \mathbf{e}_j||^2$

Vector-quantised variational autoencoder (VQ-VAE)

• Loss for single training example:


$$J = -\log p(\mathbf{x}|\mathbf{z}) + ||\mathrm{sg}(\mathbf{h}) - \mathbf{z}||^2 + \beta ||\mathbf{h} - \mathrm{sg}(\mathbf{z})||^2$$

• Assuming spherical Gaussian output:

$$J = \alpha ||\mathbf{x} - \hat{\mathbf{x}}||^2 + ||\operatorname{sg}(\mathbf{h}) - \mathbf{z}||^2 + \beta ||\mathbf{h} - \operatorname{sg}(\mathbf{z})||^2$$

- Explicitly denoting selected embedding: $J = \alpha ||\mathbf{x} - \hat{\mathbf{x}}||^2 + ||\mathrm{sg}(\mathbf{h}) - \mathbf{e}_k||^2 + \beta ||\mathbf{h} - \mathrm{sg}(\mathbf{e}_k)||^2$
- $||\mathbf{x} \hat{\mathbf{x}}||^2$ is the reconstruction loss
- $||{\rm sg}({\bf h})-{\bf e}_k||^2$ updates the embedding codebook, with ${\rm sg}$ denoting the stop-gradient
- $||\mathbf{h} \operatorname{sg}(\mathbf{e}_k)||^2$ is the *commitment loss* which encourages the encoder output \mathbf{h} to lie close to the selected codebook embedding \mathbf{e}_k

Vector-quantised variational autoencoder (VQ-VAE)

$$\mathbf{z} = \mathbf{e}_k \text{ where } k = \operatorname{argmin}_{j=1}^K ||\mathbf{h} - \mathbf{e}_j||^2$$
$$J = \alpha ||\mathbf{x} - \hat{\mathbf{x}}||^2 + ||\operatorname{sg}(\mathbf{h}) - \mathbf{e}_k||^2 + \beta ||\mathbf{h} - \operatorname{sg}(\mathbf{e}_k)||^2$$

- \mathbf{e}_{K} \mathbf{e}_1 Quantisation in VQ-VAE: $\mathbf{z} = \mathbf{e}_k$ where $k = \operatorname{argmin}_{i=1}^K ||\mathbf{h} - \mathbf{e}_i||^2$ Codebook $\frac{\partial J}{\partial \mathbf{h}}$ • For backpropagation we need: h • Chain rule: $\frac{\partial J}{\partial \mathbf{h}} = \frac{\partial \mathbf{z}}{\partial \mathbf{h}} \frac{\partial J}{\partial \mathbf{z}}$ select • What is $\frac{\partial \mathbf{z}}{\partial \mathbf{h}}$ with $\mathbf{z} = \text{closest}(\mathbf{e}_1, \dots, \mathbf{e}_K)$? Cannot solve directly
- Idea: If $\mathbf{z} \approx \mathbf{h}$ then we could use $\frac{\partial J}{\partial \mathbf{h}} \approx \frac{\partial J}{\partial \mathbf{z}}$
- $||sg(\mathbf{h}) e_k||^2 + \beta ||\mathbf{h} sg(e_k)||^2$ adds incentive for $\mathbf{z} \approx \mathbf{h}$

- So, why not just use $J = ||\mathbf{x} \hat{\mathbf{x}}||^2$?
- Then there is no incentive for $\mathbf{z} \approx \mathbf{h}$
- Why not just add $||\mathbf{h} \mathbf{z}||^2$?
- Might want to update \mathbf{h} and the selected embedding $\mathbf{z} = \mathbf{e}_k$ at different rates

- I.e., might still want **h** to sometimes pick different embeddings in the codebook so that these get updated (think about how we add noise in standard STE)
- Answer to both above questions: it works better