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Why attempt to emulate language acquisition?

Improvements in speech technology

New insights and approaches for machines that learn

New insights into human learning
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1. Multimodal few-shot learning from
images and speech

Leanne
Nortje

Kayode
Olaleye

Dan
Oneat, ă

Nortje et al., “Visually grounded few-shot word acquisition with fewer shots,” in Interspeech, 2023.
Nortje et al., “Visually grounded few-shot word learning in low-resource settings,” arXiv, 2023.
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Unimodal one-shot learning and classification
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Fei-Fei et al., “One-shot learning of object categories,” TPAMI, 2006.
Lake et al., “One-shot learning of generative speech concepts,” in CogSci, 2014.
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Multimodal one-shot learning and matching
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Eloff et al., “Multimodal one-shot learning of speech and images,” in ICASSP, 2019.
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Multimodal attention network (MattNet)
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The acoustic context network is
a CPC model trained on Places
and LibriSpeech (level 1).



How can we train MattNet with just a few shots?

Support set

• Train on background classes

• Naively fine-tune on support-set pairs
(Miller and Harwath, 2022)

• Use unlabelled unimodal data to artificially
construct more pairs
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Few-shot retrieval results

P@N retrieval accuracies (%):

Number of shots, K

Model 5 10 50 100

DAVEnet (Miller and Harwath, 2022) – 8.4±0.0 24.0±0.1 35.5±0.2
MattNet background classes 22.0±0.4 24.1±0.8 22.7±0.5 23.2±1.1
MattNet naive fine-tuned 13.2±0.6 34.8±0.7 40.9±0.3 40.5±0.5
MattNet with mining 44.4±0.0 43.4±0.1 40.2±0.0 42.5±0.1
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Attention visualisation
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Attention visualisation
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Yorùbá few-shot classification accuracies

English Yorùbá Yorùbá (en pretrained)
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Nortje et al., “Visually grounded few-shot word learning in low-resource settings,” arXiv, 2023.
https://www.kamperh.com/yfacc/
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Using images for grounding speech

Harwath et al., ”Unsupervised learning of spoken language with visual context,” in NeurIPS, 2016.
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Many remaining questions

• Catastrophic forgetting (Miller and Harwath, 2022)

• Cognitive plausibility and what this actually tells us about cognition

• Shortcomings in the mining approach

• Explore this to investigate the mutual exclusivity bias

Would love to get your inputs!
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2. Probing self-supervised speech models
by listening

Benjamin
van Niekerk

Matthew
Baas

Marc-André
Carbonneau

Baas et al., “Voice conversion with just nearest neighbors,” in Interspeech, 2023.
van Niekerk et al., “Rhythm modeling for voice conversion,” IEEE SPL, 2023.



Self-supervised speech models
HuBERT / WavLM:

Feature encoder (CNN)

Context network (transformer)

K
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Contrastive predictive coding (CPC):
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We use voice alteration and voice conversion as a probe to
show you how phonetic content and speaker are captured.

(But it’s really just an excuse . . . )
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No modification: Play

Fricatives: Play
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No modification: Play

Vowels: Play

30 / 41



No modification: Play

Stops: Play
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No modification: Play

Nasals: Play

32 / 41



Voice conversion

Source: Play Reference: Play Output: Play
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Our key idea
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k-nearest neighbours voice conversion (kNN-VC)
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Existing voice conversion systems
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Voice conversion results

Model WER ↓ EER ↑ MOS ↑ SIM ↑

Testset topline 5.96 – 4.24 3.19

VQMIVC (Wang et al., 2021) 59.46 2.22 2.70 2.09
YourTTS (Casanova et al., 2022) 11.93 25.32 3.53 2.57
FreeVC (Li et al., 2022) 7.61 8.97 4.07 2.38
kNN-VC 7.36 37.15 4.03 2.91
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Fun samples

Cross-lingual conversion:

Source: Play Reference: Play Output: Play

Whispered music conversion:

Source: Play Reference: Play Output: Play

Human-to-animal conversion:

Source: Play Reference: Play Output: Play
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Voice conversion with stuttered reference speech

Source: Play Reference: Play Output: Play Baseline: Play (TTS)
Source: Play Reference: Play Output: Play Baseline: Play (manual)
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What does this tell us about self-supervised speech models?

• Broader phonetic categories are captured in hierarchy

• Phonetic content is matched through cosine distance

• But speaker characteristics are also still strongly captured

All of this is kind of expected, but it is still cool to be able to hear it!
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Conclusion

Interaction with environment
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https://bshall.github.io/knn-vc/

https://www.kamperh.com/

https://bshall.github.io/knn-vc/
https://www.kamperh.com/


Two-step (indirect) multimodal one-shot approach
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Eloff et al., “Multimodal one-shot learning of speech and images,” in ICASSP, 2019.
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