Test slide

- Can you see my pointer?
- Can you hear this? Play
- Can you see the video on the next slide?

Voice conversion and the geometry of self-supervised speech representations

Conversational Al Reading Group, June 2025

Herman Kamper

Electrical and Electronic Engineering, Stellenbosch University, South Africa http://www.kamperh.com/

Self-supervised spoken language models

HuBERT / WavLM:

Contrastive predictive coding (CPC):

Self-supervised spoken language models

HuBERT / WavLM:

Contrastive predictive coding (CPC):

Caveat: SSL = WavLM layer six (1024 dimensional)

Voice conversion is useful for understanding SSL features

Agenda:

- Introduce two simple voice conversion approaches
- They give surprisingly good results, despite being dumb
- What does this tell us about the geometry of SSL features?

Voice conversion is useful for understanding SSL features

Agenda:

- Introduce two simple voice conversion approaches
- They give surprisingly good results, despite being dumb
- What does this tell us about the geometry of SSL features?

Main takeaways:

- The usefulness of voice conversion for probing
- Simpler methods are awesome

kNN-VC: Voice conversion with just nearest neighbours

Benjamin van Niekerk

Matthew Baas

Voice conversion

Voice conversion

Source: Play Output: Play

Existing voice conversion systems

Voice conversion results

Model	WER ↓	EER ↑	MOS ↑	SIM ↑
Ground truth	5.96	-	4.24	3.19
VQMIVC (Wang et al. 2021)	59.46	2.22	2.70	2.09
YourTTS (Casanova et al. 2022)	11.93	25.32	3.53	2.57
FreeVC (Li et al. 2022)	7.61	8.97	4.07	2.38
kNN-VC	7.36	37.15	4.03	2.91

Fun conversions

Cross-lingual conversion:

Source: Play

Reference: Play

Output: Play

Whispered music conversion:

Source: Play

Reference: Play

Output: Play

Human-to-animal conversion:

Source: Play

Reference: Play

Output: Play

Applications of kNN-VC

• Stuttered reference speech (Baas and Kamper 2023):

Source: Play Reference: Play Output: Play Baseline: Play (TTS)

• Cross-lingual child voice conversion (Jacobs et al. 2025):

Source: Play Output: Play (Afrikaans)

Source: Play Output: Play (isiXhosa)

• Singing voice conversion (Shao et al. 2025)

• Dysarthric to healthy speech (El Hajal et al. 2025)

Anonymisation (Franzreb et al. 2025)

What does this tell us about SSL representations?

- Phonetic content is matched through cosine distance
- But speaker characteristics are also still strongly captured

LinearVC: Voice conversion with just linear regression

Benjamin van Niekerk

Julian Zaïdi

Marc-André Carbonneau

LinearVC

Codec-based spoken language model for voice conversion

SoundStorm (Borsos et al. 2023)

Voice conversion results

Model	WER ↓	EER ↑	Naturalness ↑	Similarity ↑
Ground truth	4.3	-	-	-
kNN-VC (Baas et al. 2023)	5.7	38.9	60.6 ± 3.6	67.2 ± 2.7
FreeVC (Li et al. 2022)	5.7	10.5	71.1 ± 3.6	48.7 ± 2.9
SoundStorm (Borsos et al. 2023)	4.6	30.2	58.6 ± 4.0	68.6 ± 3.2
LinearVC	4.9	33.6	62.5 ± 3.5	67.5 ± 2.6

Samples

kNN-VC:

Source: Play Reference: Play Output: Play

LinearVC:

Source: Play Reference: Play Output: Play

SoundStorm:

Source: Play Output: Play

This should freak you out. Let's try to make sense of this.

Rotation: Shear in
$$x_1$$
: Shear in x_2 :

$$W = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0
\end{bmatrix} \quad
W = \begin{bmatrix}
1 & \tan \theta & 0 \\
0 & 1 & 0
\end{bmatrix}$$

$$W = \begin{bmatrix}
1 & \tan \theta & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$W = \begin{bmatrix}
1 & \cos \theta & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Voice conversion with just a bias vector

Source: Play

Reference: Play

Output: Play

Voice conversion with just a bias vector

Source: Play

Reference: Play

Output: Play

Voice conversion with just a bias vector

Source: Play

Reference: Play

Output: Play

Voice conversion with just rotation

Source: Play

Reference: Play

Just orthogonal: Play

Full LinearVC: Play

Let's try to visualise this

LinearVC with content factorisation

$$\min_{\mathbf{C},\mathbf{S}_k} \quad \sum_{k=1}^K \lVert \mathbf{X}_k - \mathbf{C}\mathbf{S}_k \rVert_F^2$$
 subject to $\operatorname{rank}(\mathbf{C}\mathbf{S}_k) \leq r$

LinearVC with content factorisation

$$\min_{\mathbf{C},\mathbf{S}_k} \sum_{k=1}^K \|\mathbf{X}_k - \mathbf{C}\mathbf{S}_k\|_F^2$$
 subject to $\operatorname{rank}(\mathbf{C}\mathbf{S}_k) \leq r$
$$\sum_{\mathbf{X}_k} \sum_{\mathbf{X}_k} \sum_{\mathbf{C}_k} \sum_{\mathbf{C}_k} \sum_{\mathbf{X}_k} \sum_{\mathbf{X$$

LinearVC with content factorisation

Source: Play

Reference: Play

LinearVC cont. fact. r = 6: Play

LinearVC cont. fact. r = 16:

LinearVC cont. fact. r = 100: Play

LinearVC cont. fact. r=256: Play

Standard LinearVC: Play

Voice conversion results

Model	WER ↓	EER ↑	Naturalness ↑	Similarity ↑
Ground truth	4.3	-	-	-
kNN-VC (Baas et al. 2023)	5.7	38.9	60.6 ± 3.6	67.2±2.7
FreeVC (Li et al. 2022)	5.7	10.5	71.1 ± 3.6	48.7 ± 2.9
SoundStorm (Borsos et al. 2023)	4.6	30.2	$58.6 {\pm} 4.0$	68.6 ± 3.2
LinearVC	4.9	33.6	$62.5 {\pm} 3.5$	$67.5 {\pm} 2.6$
LinearVC content factorisation	4.7	35.2	62.3 ± 3.7	64.2 ± 3.1

Conclusion

- Simple approaches are very useful: Can do practical voice conversion!
- Probing experiments have their place, but . . .
- Synthesis provides a unique perspective on SSL geometry
- Allows us to quickly see (hear, actually) salient effects
- Future work:
 - Formalise cartoon interpretations
 - Use content space in downstream applications

https://bshall.github.io/knn-vc/

https://www.kamperh.com/linearvc/