Unsupervised word segmentation using dynamic programming on self-supervised speech representations

AAAI SAS Workshop 2022 – Invited Talk

Herman Kamper

E&E Engineering, Stellenbosch University, South Africa

http://www.kamperh.com/

Unsupervised word segmentation

Unsupervised word segmentation

Autoencoding recurrent neural network (AE-RNN)

Autoencoding recurrent neural network (AE-RNN)

Autoencoding recurrent neural network (AE-RNN)

along ti

Assuming a maximum duration of 4 symbols

$$w(x_{a:b}) = w_{\text{seg}}(x_{a:b}) + \lambda w_{\text{dur}}(\text{dur}(x_{a:b}))$$

$$w(x_{a:b}) = w_{\text{seg}}(x_{a:b}) + \lambda w_{\text{dur}}(\text{dur}(x_{a:b}))$$

$$w(x_{a:b}) = w_{\text{seg}}(x_{a:b}) + \lambda w_{\text{dur}}(\text{dur}(x_{a:b}))$$

• Can refine iteratively: Start with random segmentation, train AE-RNN, DPDP segment, retrain AE-RNN, DPDP segment, etc.

- Can refine iteratively: Start with random segmentation, train AE-RNN, DPDP segment, retrain AE-RNN, DPDP segment, etc.
- Use probabilistic approach to sample from and explore the space of possible segmentations [Elsner and Shain, EMNLP'17]

- Can refine iteratively: Start with random segmentation, train AE-RNN, DPDP segment, retrain AE-RNN, DPDP segment, etc.
- Use probabilistic approach to sample from and explore the space of possible segmentations [Elsner and Shain, EMNLP'17]
- Dumb idea:
 Train on full utterances

- Can refine iteratively: Start with random segmentation, train AE-RNN, DPDP segment, retrain AE-RNN, DPDP segment, etc.
- Use probabilistic approach to sample from and explore the space of possible segmentations [Elsner and Shain, EMNLP'17]
- Dumb idea: Train on full utterances (this works)

H. Kamper and B. van Niekerk, "Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks," in *Proc. Interspeech*, 2021.

H. Kamper and B. van Niekerk, "Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks," in *Proc. Interspeech*, 2021.

H. Kamper and B. van Niekerk, "Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks," in *Proc. Interspeech*, 2021.

$$w(x_{a:b}) = w_{\text{seg}}(x_{a:b}) + \lambda w_{\text{dur}}(\text{dur}(x_{a:b}))$$

$$w(x_{a:b}) = w_{\text{seg}}(x_{a:b}) + \lambda w_{\text{dur}}(\text{dur}(x_{a:b}))$$

Segmental CPC (SCPC):

[Bhati et al., Interspeech'21]

Multi-level aligned CPC (mACPC):

[Cuervo et al., arXiv'21]

- S. Bhati et al., "Segmental contrastive predictive coding for unsupervised word segmentation," in Proc. Interspeech, 2021.
- S. Cuervo et al., "Contrastive prediction strategies for unsupervised segmentation and categorization of phonemes and words," arXiv preprint arXiv:2110.15909, 2021.

Evaluation on English

	Word boundary				Token
Model	Prec.	Rec.	F_1	R-val.	$\overline{F_1}$
ES-KMeans [Kamper et al., ASRU'17] BES-GMM [Kamper et al., CSL'17]	30.3 31.5	16.6 12.4	21.4 17.8	39.1 37.2	19.2 18.6
SCPC [Bhati et al., Interspeech'21] mACPC [Cuervo et al., arXiv'21]	36.9 42.1	29.9 30.3	33.0 35.1	45.6 47.4	-
DPDP AE-RNN on DPDP CPC+ ${\cal K}$ -means	35.3	37.7	36.4	44.3	25.0

${\sf ZeroSpeech~2017/2020~evaluation}$

	Word boundary			Token
Model	Prec.	Rec.	$\overline{F_1}$	$\overline{F_1}$
French:				
ES-KMeans [Kamper et al., ASRU'17]	37.0	52.2	43.3	6.3
Probabilistic DTW [Räsänen and Blandon, IS'20]	31.6	86.4	46.3	5.1
Self-expressing autoencoder [Bhati et al., IS'20]	34.0	83.9	48.4	8.3
DPDP AE-RNN on DPDP CPC $+K$ -means	49.8	57.9	53.5	12.2
Mandarin:				
ES-KMeans [Kamper et al., ASRU'17]	42.6	75.6	54.5	8.1
Probabilistic DTW [Räsänen and Blandon, IS'20]	34.2	87.4	49.2	4.4
Self-expressing autoencoder [Bhati et al., IS'20]	36.5	91.9	52.2	12.1
DPDP AE-RNN on DPDP CPC $+K$ -means	66.2	70.7	68.3	26.3

• Bottom-up acoustic unit discovery with symbolic word segmentation is competitive

- Bottom-up acoustic unit discovery with symbolic word segmentation is competitive
- DPDP improvements: Duration modelling and lexicon discovery

- Bottom-up acoustic unit discovery with symbolic word segmentation is competitive
- DPDP improvements: Duration modelling and lexicon discovery
- Absolute results are still low: Word token $F_1 \approx 25\%$
- Are we starting to reach limits of word segmentation from unlabelled speech?

- Bottom-up acoustic unit discovery with symbolic word segmentation is competitive
- DPDP improvements: Duration modelling and lexicon discovery
- Absolute results are still low: Word token $F_1 \approx 25\%$
- Are we starting to reach limits of word segmentation from unlabelled speech?
- Start to integrate external top-down and grounding signals, e.g. other modalities

[Bisk et al., EMNLP'20; Moulin-Frier and Oudeyer, AAAI'21]

- Bottom-up acoustic unit discovery with symbolic word segmentation is competitive
- DPDP improvements: Duration modelling and lexicon discovery
- Absolute results are still low: Word token $F_1 \approx 25\%$
- Are we starting to reach limits of word segmentation from unlabelled speech?
- Start to integrate external top-down and grounding signals, e.g. other modalities
 - [Bisk et al., EMNLP'20; Moulin-Frier and Oudeyer, AAAI'21]

- Bottom-up acoustic unit discovery with symbolic word segmentation is competitive
- DPDP improvements: Duration modelling and lexicon discovery
- Absolute results are still low: Word token $F_1 \approx 25\%$
- Are we starting to reach limits of word segmentation from unlabelled speech?
- Start to integrate external top-down and grounding signals, e.g. other modalities
 - [Bisk et al., EMNLP'20; Moulin-Frier and Oudeyer, AAAI'21]

H. Kamper, "Word segmentation on discovered phone units with dynamic

https://github.com/kamperh/vqwordseg

programming and self-supervised scoring." arXiv preprint arXiv:2202.11929, 2022

https://github.com/kamperh/dpdp_aernn