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Duration-penalized dynamic programming (DPDP)
w(xa:b) = wseg(xa:b) + Awdur(dur(xa:b))
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DPDP on self-supervised features with vector quantization
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Segmental CPC (SCPC):

[Bhati et al.,
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S. Bhati et al.,

S. Cuervo et al.,

arXiv preprint arXiv:2110.15909, 2021.

“Segmental contrastive predictive coding for unsupervised word segmentation,
Contrastive prediction strategies for unsupervised segmentation and categorization of phonemes and words

Multi-level aligned CPC (mACPC):
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Evaluation on English

Word boundary Token
Model Prec. Rec. F; R-val. Fy
ES-KMeans [Kamper et al., ASRU'17] 303 166 214 39.1 19.2
BES-GMM [Kamper et al., CSL'17] 315 124 178 37.2 18.6
SCPC [Bhati et al., Interspeech'21] 369 299 33.0 45.6 -
MACPC [Cuervo et al., arXiv'21] 42,1 303 351 474 -
DPDP AE-RNN on DPDP CPC+K-means 353 37.7 364 443 25.0
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ZeroSpeech 2017/2020 evaluation

Word boundary Token
Model Prec. Rec. F F
French:
ES-KMeans [Kamper et al., ASRU'17] 37.0 522 433 6.3
Probabilistic DTW [Rasanen and Blandon, 1S'20] 316 86.4 46.3 51
Self-expressing autoencoder [Bhati et al., 1S'20] 340 839 484 8.3
DPDP AE-RNN on DPDP CPC+ K-means 49.8 579 535 122
Mandarin:
ES-KMeans [Kamper et al., ASRU'17] 426 75.6 545 8.1
Probabilistic DTW [Risinen and Blandon, 1S'20] 342 874 492 4.4
Self-expressing autoencoder [Bhati et al., 1S'20] 36.5 919 522 121
DPDP AE-RNN on DPDP CPC+ K-means 66.2 70.7 68.3 26.3
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H. Kamper, “Word segmentation on discovered phone units with dynamic
programming and self-supervised scoring,” arXiv preprint arXiv:2202.11929, 2022
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