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S. Singh, The Code Book,
Fourth Estate, 1999.
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Can a machine do this? Stellenbosch
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a long time ago in a galaxy far far away



Unsupervised machine learning from speech oo e

||||||||||||
llIll‘IIIllllI‘l |||||Illl“l“ll"llll‘l"lIIIII

)
é | I|||”|“||H| |||||||| ||‘||‘||| |“|‘|||"| |||M|| |M‘| ||‘||

"I‘I"“"l""'l'l"‘ll'll|‘|Ml'l"Illl""h"‘lll|ll"l
”







UNIVERSITY
IYUNIVESITHI

acquisition in humans and machines

The science and engineering of language Stellenbosch

Science: Understanding some observed phenomenon

Engineering: Building something
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Mimicking infant language acquisition
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Why try to understand the science of oretenposch
language acquisition?
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A 3-year-old human: GPT-3:
30 million words 100 billion words
3 years old 10 000 years old
Speech, no word boundaries Text, with word boundaries
Energy to train: 1.6 MWh Energy to train: 1287 MWh

M. de Seyssel, “Introduction to language acquisition for speech processing researchers,” Interspeech Tutorial, 2025.

D. Patterson et al. “Carbon emissions and large neural network training,” arXiv, 2021.
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Cognitive science: Reverse engineering Stellenbosch
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E. Dupoux, “Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner,” Cognition, 2018.
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Model 1

Model 2

Model 3

Model 4

Infant
study 1

Infant
study 2

Infant
study 3
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’.’) Check for updates

COGNITIVE SCIENCE )
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Model 1 V4 v X
Model 2 v X X
Model 3 X X X
Model 4 X X v

18 / 37



Models that learn without supervision
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Models that learn without supervision Stellenbosch
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Models that learn without supervision @l Stellenbosch
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Model 2

Model 3

Model 4

Infant Infant Infant
study 1 study 2 study 3
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What do we know about infant phonetic ore penposch
learning?
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90
English: [4] # [] § .. American
rock —lock IS Infants
wrong — long ?, .i
52 70-
Japanese: [4] =[] SR
€9
GJ | .
o % 60 -
Mandarin: [¢] # [te"] o 5; Japanese
- Infants
English: [¢] = [te"] ;—'\O 50
- 7
Catalan: [e] # [€] 0 , :
6-8 months 10-12 months

Spanish: [e] = [g] Age of infants

P. K. Kuhl et al., “Infants show a facilitation effect for native language phonetic perception between 6 and 12 months,” Developmental Science, 2006.
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Results: Models vs infants Stellenbosch
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New hypotheses for infant testing Stellenbosch
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DPGMM CAE-RNN
Contrast Mean difference Contrast Mean difference
n|-[1 4.9 [f]-[z] 6.9
d]—[1] 4.9 [aA]-[ov] 5.8
3] |1] 4.9 [f]-[s] 5.5
[3]—]1] 4.9 [l]-[1] 4.8
h]—|[1] 4.6 [m]-[1] 4.5
A ]—[3Y] 4.4  [1]-[w] 4.5
‘m]—|1] 4.5 [a]-[av] 4.3
O] 1] 3.8 [a]-[a] 3.0
1]—[x 3.7
1| [V] 3.4
1|—[t] 2.6
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Unsupervised models for new speech technology
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Predictive unsupervised speech model
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Voice conversion
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Previous voice conversion systems ([ Stellenbosch
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J. Li, W. Tu, and L. Xiao, “FreeVC: Towards high-quality text-free one-shot voice conversion,” IEEE ICASSP, 2023.

D. Wang et al., “VQMIVC: Vector quantization and mutual information-based unsupervised speech representation disentanglement for one-shot voice
conversion,” Interspeech, 2021.

E. Casanova et al. “YourTTS: Towards zero-shot multi-speaker TTS and zero-shot voice conversion for everyone,” ICML, 2022.
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Really simple machine learning on top of Stellenbosch
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unsupervised speech representations

K-nearest neighbours voice conversion (kNN-VC)

Linear regression voice conversion (LinearVC)

Bl

33/37



UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

Applications of KNN-VC @l Stellenbosch

* Simple input and output example [Output E] [ Input ]

» Cross-lingual for (bad) voice acting [Output E] [ Input ]

* Processing stuttered speech [ Output © ] [Reference E]
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A. Smith, “How narrative comprehension and production are intertwined with early learning indicators,” Master’s thesis, Stellenbosch University, 2023.

C. Jacobs et al., “Speech recognition for automatically assessing Afrikaans and isiXhosa preschool oral narratives,” IEEE ICASSP, 2025. )
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Summing up - food is close
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acquisition in humans and machines

The science and engineering of language Stellenbosch

Science: Understanding some observed phenomenon (exploring creation)

Engineering: Building something (shaping creation, stewarding, co-creating)
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Diode rectifier

(Behind mounting plate) Battery storage

Discharge load

Induction Motor
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