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Success in speech recognition

[Xiong et al., arXiv’16]; [Saon et al., arXiv’17]

• Google Voice: English, Spanish, German, . . . , Zulu (∼50 languages)

• Data: 2000 hours transcribed speech audio; ∼350M/560M words text

• Can we do this for all 7000 languages spoken in the world?
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What can we learn from weak labels?

• Weak labels: Speech paired with other signal (e.g. images)

• Criticism: You always have some labelled data, but. . .

• Get insight into human language acquisition [Räsänen and Rasilo, ’15]

• Language acquisition in robots [Roy, ’99]; [Renkens and Van hamme, ’15]

• Analysis of audio for unwritten languages [Besacier et al., ’14]

• New insights and models for speech processing
[Jansen et al., ’13]
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Using images to ground language

• Image captioning: Generate written natural language description of a
given image [Vinyals et al., CVPR’15]

• Grounding written language using images [Bernardi et al., JAIR’16]

• We consider images paired with unlabelled spoken captions:

Play

3 / 13



Using images to ground language
• Image captioning: Generate written natural language description of a

given image [Vinyals et al., CVPR’15]

• Grounding written language using images [Bernardi et al., JAIR’16]

• We consider images paired with unlabelled spoken captions:

Play

3 / 13



Using images to ground language
• Image captioning: Generate written natural language description of a

given image [Vinyals et al., CVPR’15]

• Grounding written language using images [Bernardi et al., JAIR’16]

• We consider images paired with unlabelled spoken captions:

Play

3 / 13



Word prediction from images and speech
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Images paired with untranscribed speech
We are still in this setting:

• We do not use any of the speech transcriptions during model training
(only for evaluation)
• But our resulting model can make bag-of-words (BoW) predictions

• Note: Vision system could be seen as language independent (future)
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Experimental details

• Data: 8000 images with 5 spoken captions, divided into train,
development and test sets [Harwath and Glass, ASRU’15]

• Prediction: Output words w where fw(X) > α

• Tasks: Spoken bag-of-words prediction; keyword spotting

• Evaluation: Compare to words in transcriptions of test data

6 / 13



Task 1: Spoken bag-of-words prediction

Input utterance Predicted BoW labels
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Task 1: Spoken bag-of-words prediction
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Task 1: Spoken bag-of-words prediction

False alarm keywords and words in corresponding utterances
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Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach Play (one of top 10)
behind
bike
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . .
behind
bike
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind
bike
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave
bike
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys
large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys Play

large
play
sitting
yellow
young

10 / 13



Task 2: Keyword spotting

Keyword Example of matched utterance Type
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Task 2: Keyword spotting

Keyword Example of matched utterance Type

beach a boy in a yellow shirt is walking on a beach . . . correct
behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . . . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic
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Task 2: Keyword spotting

Model P@10 P@N EER

Unigram baseline 5.0 3.5 50.0
VisionSpeechCNN 54.5 33.1 22.3
OracleSpeechCNN 96.5 83.0 4.1

11 / 13



Task 3: (Towards) semantic keyword spotting

Retrieve all utterances in a set containing content related in meaning to
a given textual keyword

Model P@10

Unigram baseline 10.0
VisionSpeechCNN 82.5
OracleSpeechCNN 99.5

Future work coming, formalising this task.
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Conclusions and future work

• Visual grounding makes it possible to develop a word prediction
model without any parallel speech and text

• Future: Thorough analysis of VisionSpeech models to see if they learn
something about semantics; multi-lingual aspects

• What can we learn about language acquisition in humans?

• Language acquisition in robots
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https://github.com/kamperh/recipe_vision_speech_flickr

https://github.com/kamperh/recipe_vision_speech_flickr


The vision tagging system

• VGG-16 input layers (1.3M images)
[Simonyan and Zisserman, arXiv’14]

• Train on Flickr30k (caption BoW labels)

• Targets: W = 1000 most common word
types after removing stop words

• Note: Vision system could be seen as
language independent (future work)

VGG

hat ma
n

shi
rt

yvis

W



Word prediction from images and speech

Vision system outputs yvis, giving probability of word w for image I:

yvis,w = P (w|I,γ)

Interpret dimension w of the speech network output f(X) as:

fw(X) = P (w|X,θ)

Train using cross-entropy loss (i.e. soft targets):

L(f(X),yvis) = −
W∑

w=1
{yvis,w log fw(X) + (1− yvis,w) log [1− fw(X)]}

If yvis,w ∈ {0, 1}, this is summed log loss of W binary classifiers.
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Map images and speech into common space

X

VGG

m
ax

co
n
v

m
ax

fe
ed
fw
d

d(yvis,yspch) distance

yvis yspch

[Harwath et al., NIPS’16]



Retrieval in common (semantic) space

y ∈ RD in D-dimensional space

yvis

yspch

[Harwath et al., NIPS’16]
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