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Background: Why acoustic word embeddings?

• Current speech recognition methods require large labelled data sets

• Zero-resource speech processing aims to develop methods that can
discover linguistic structure from unlabelled speech [Dunbar et al., ASRU’17]

• Example applications: Unsupervised term discovery, query-by-example

• Problem: Need to compare speech segments of variable duration
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Acoustic word embeddings
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Example application: Query-by-example search
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[Levin et al., ICASSP’15]
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Supervised and unsupervised acoustic embeddings

• Growing body of work on acoustic word
embeddings

• Supervised and unsupervised methods

• Unsupervised methods can be applied in
zero-resource settings

• But there is still a large performance gap
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Unsupervised monolingual acoustic word embeddings
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Supervised multilingual acoustic word embeddings
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Experimental setup

• Training data: Six well-resourced languages
Czech (CS), French (FR), Polish (PL), Portuguese (PT), Russian (RU), Thai (TH)

• Test data: Six languages treated as zero-resource
Spanish (ES), Hausa (HA), Croatian (HR), Swedish (SV), Turkish (TR), Mandarin (ZH)

• Evaluation: Same-different isolated word discrimination

• Embeddings: M = 130 for all models

• Baselines:
— Downsampling: 10 equally spaced MFCCs flattened
— Dynamic time warping (DTW) alignment cost between test segments
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1. Is multilingual supervised > monolingual unsupervised?

DTW Downsample CAE-RNN CAE-RNN ClassifierRNN
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2. Does training on more languages help?

HR (UTD) RU RU+CS RU+CS+FR Multilingual
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3. Is the choice of training language important?

ES HA HR SV TR ZH
Evaluation language

CS

FR

PL

PT

RU

TH
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41.6 51.1 41.0 28.7 37.0 42.6

42.6 41.8 30.4 25.3 32.5 35.8

41.1 43.7 35.8 25.5 33.7 39.5

45.9 46.2 36.4 26.6 34.1 39.6

35.0 39.7 31.3 22.3 29.7 37.1

28.5 44.5 29.9 17.9 23.6 36.2
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Conclusions and future work

Conclusions:

• Proposed to train a supervised multilingual acoustic word embedding model
on well-resourced languages and then apply to zero-resource languages

• Multilingual CAE-RNN and ClassifierRNN consistently outperform
unsupervised models trained on zero-resource languages

Future work:

• Different models both for multilingual and unsupervised training

• Analysis to understand the difference between CAE-RNN and ClassifierRNN

• Does language conditioning help during decoding?
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