Unsupervised neural network based feature
extraction using weak top-down constraints

Herman Kamper'2, Micha Elsner?, Aren Jansen*, Sharon Goldwater?

LCSTR and 2ILCC, School of Informatics, University of Edinburgh, UK
3Department of Linguistics, The Ohio State University, USA
4HLTCOE and CLSP, Johns Hopkins University, USA

ICASSP 2015
=N T -H:-E
W OHIO
JOHNS HOPKINS ~ SYalls

UNIVERSITY

UNIVERSITY




Introduction

» Huge amounts of speech audio data are becoming available online.

> Even for severely under-resourced and endangered languages (e.g. unwritten),
data is being collected.

v

Generally this data is unlabelled.

» We want to build speech technology on available unlabelled data.
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> Even for severely under-resourced and endangered languages (e.g. unwritten),
data is being collected.

v

Generally this data is unlabelled.

» We want to build speech technology on available unlabelled data.

v

Need unsupervised speech processing techniques.
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Example application: query-by-example search
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Example application: query-by-example search

Spoken query:

i

What features should we use to represent the speech for such unsupervised tasks?
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Supervised neural network feature extraction
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Supervised neural network feature extraction

Output: predict phone states

Input: speech frame(s)
e.g. MFCCs, filterbanks
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Supervised neural network feature extraction

Output: predict phone states

ay ey k v

L Phone classifier
(learned jointly)

Feature extractor
(learned from data)

Input: speech frame(s)
e.g. MFCCs, filterbanks

But what if we do not have phone class

targets to train our network?
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Weak supervision: unsupervised term discovery
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Weak supervision: unsupervised term discovery
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Weak supervision: unsupervised term discovery

Can we use these discovered word pairs
{ to provide us with weak supervision?

b
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Weak supervision: align the discovered word pairs

Use correspondence idea from [Jansen et al., 2013]
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Autoencoder (AE) neural network
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Autoencoder (AE) neural network

Output is same as input

Input speech frame

A normal autoencoder neural network is trained to
reconstruct its input.
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Autoencoder (AE) neural network

Output is same as input

Input speech frame

This reconstruction criterion can be used to pretrain a
deep neural network.
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The correspondence autoencoder (cAE)

Frame from other word in pair

Frame from one word

The correspondence autoencoder (cAE) takes a frame
from one word, and tries to reconstruct the
corresponding frame from the other word in the pair.
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The correspondence autoencoder (cAE)

Frame from other word in pair

Unsupervised
feature extractor

Frame from one word

In this way we learn an unsupervised feature extractor
using the weak word-pair supervision.
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Complete unsupervised cAE training algorithm

Speech

Train stacked
autoencoder
(pretraining)

corpus

(2

Unsupervised
term discovery

Align word pair frames

(4) Train correspondence
autoencoder

Unsupervised
feature
extractor
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Evaluation of features: the same-different task

» Each term is treated in turn as the query.
» The threshold is varied to obtain a precision-recall curve.

» The area under the precision-recall curve is used as the final evaluation
metric, referred to as average precision (AP).

» AP is higher for feature representations which are better able to associate
words of the same type and discriminate between words of different types.

» AP has been shown to correlate well with phone recognition error rates
[Carlin et al., 2011] and has been used in several other unsupervised studies.
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Baseline: partitioned universal background model

Speech Train '.' [}
Collection Gaussian UBM og s
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Use posteriorgram features from the partitioned universal
background model (UBM) as baseline [Jansen et al., 2013].
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Evaluation

v

Speech from Switchboard is used for evaluation.

> Pretraining data: 23 hours of untranscribed speech.

v

We consider two sets of word pairs for training the cAE:
© 100k gold standard word pairs.

@ 80k word pairs discovered using unsupervised term discovery (UTD).

v

Test set for same-different evaluation: 11k word tokens, 60.7M pairs, 3%
produced by same speaker.
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Evaluation

» Speech from Switchboard is used for evaluation.
> Pretraining data: 23 hours of untranscribed speech.

» We consider two sets of word pairs for training the cAE:
© 100k gold standard word pairs.

@ 80k word pairs discovered using unsupervised term discovery (UTD).

» Test set for same-different evaluation: 11k word tokens, 60.7M pairs, 3%
produced by same speaker.

» Neural network architecture (optimized on development set):

39-dimensional single-frame MFCC input features, 13 layers, 100 hidden units
per layer, take features from the fourth-last encoding layer.
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Comparison with baseline: gold standard word pairs

Features S’Zi;:iii
MFCCs with CMVN 0.214
UBM with 1024 components [Jansen et al., 2013] 0.222
1024-UBM partitioned 100 components [Jansen et al., 2013] 0.286
100-unit, 13-layer stacked autoencoder 0.215
100-unit, 13-layer correspondence autoencoder 0.469
Supervised NN, 10 hours [Carlin et al., 2011] 0.439
Supervised NN, 100 hours [Carlin et al., 2011] 0.516
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Evaluation using terms from unsupervised term

discovery

Features p?r\éiir:i;g;
MFCCs with CMVN 0.214
Best of [Jansen et al., 2013] using gold standard word pairs 0.286
Correspondence autoencoder trained on gold standard word pairs 0.469
Correspondence autoencoder trained on UTD pairs 0.341
Supervised NN, 10 hours [Carlin et al., 2011] 0.439
Supervised NN, 100 hours [Carlin et al., 2011] 0.516
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Summary and conclusion

> Introduced the correspondence autoencoder (cAE), a novel neural network
which can be trained unsupervised on unlabelled speech data.

» Evaluated the network in a word discrimination task.

» Showed 64% relative improvement over a previous state-of-the-art GMM
system.

» Come to within 23% of supervised baseline.

» Future work: apply in further unsupervised speech processing tasks; how can
the correspondence idea be used in other neural network structures?
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Code

https://github.com/kamperh/speech_correspondence/


https://github.com/kamperh/speech_correspondence/

Choosing the network architecture
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Development set cAE performance using gold standard word pairs. Features were
taken from the fourth-last to second-last encoding layers.



