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Contributions Noise vs. weight decay Experimental results

We study the learning dynamics of linear denoising autoencoders (DAEs)[1]. Inspired by [2], we
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Code Figure 2: Theoretically predicted learning dynamics for noise compared to weight decay for linear autoencoders. Top: Noise dynamics ; o
(green), darker line colours correspond to larger amounts of added noise. Bottom: Weight decay dynamics (orange), darker line colours g 0.4 § G
. . . correspond to larger amounts of regularisation. Left to right: Eigenvalues A = 2.5,1 and 0.5 associated with high to low variance.
Our specific contributions: 02 ]
. . . . . ) ) ) 92\
e Derived learning dynamics for linear DAEs and weight decayed autoencoders (WDAES). e Ratio of the optimal learning rate for DAEs vs. WDAEs: R = X :376 L ' | "
e [lluminated differences between the dynamics of DAEs and WDAEs: DAFEs seem to exhibit . : : : : : : : : : : :
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e Showed that the theory matches real-world tralnmg reasonably well. \ - Rato | 207 Figure 5: 'Leammg dynamics for MNIST and QIFAR—JO. Solid lines replresent the.oretlcal dynamics and ‘x rr.larkerQS simulated dynamics.
) ) ] | o ] ) 0. 0 0871 g Left: Weight decay: AE (blue) vs. WDAE with v = 0.5 (orange). Right: Noise: AE (blue) vs. DAE with ¢® = 0.5 (green). Top:
e Verified that nonlinear autoencoders have qualitatively similar learning dynamics. d ! £ 0.20 MNIST. Bottom: CIFAR-10.
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Figure 3: Learning dynamics for optimal discrete time learning rates (A = 1). Left: Dynamics of DAEs (green) vs. WDAEs (orange), = 0.4 .
L — _— - 1 where darker line colours correspond to larger amounts noise or weigh decay. Middle: Optimal learning rate as a function of noise ¢ for
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Figure 6: Learning dynamics for nonlinear networks using ReLU activation. AE (blue), WDAE (orange) and DAE (green). Left: MNIST
Right: CIFAR-10.
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Figure 1: Hyperbolic learning dynamics, loss surface and gradient descent paths for linear denoising autoencoders. Top: Hyperbolic In International Conference on Learning Representations, 2014.

learning dynamics for each simulated run (dashed orange lines) together with the theoretically predicted learning dynamics (solid green
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lines). The red line in each plot indicates the final value of the resulting fixed point solution w*. Bottom: The loss surface corresponding Epoch Epoch
to -the loss £\ = %(1 — wowy)? + %(U)le)Q for A =1, E-lS .well as the gradient descent paths (dashed orange lines) f(?r ra.ndomly initialised Figure 4: The effect of noise versus weight decay on the norm of the weights during learning. Left: Two-dimensional loss surface ACknOWIedgementS
weights. The cyan hyperbolas represent the global minimum loss manifold that corresponds to all possible combinations of wy and wy 0y = %(1 — wow)? + 5(wowr)? 4+ L (wd + w?). Gradient descent paths (orange/magenta dashed lines), minimum loss manifold (cyan )
that minimise £,. Left: ¢ = 0,w* = 1. Middle: ¢ = 1,w* = 0.5. Right: ¢ =5, w* = 1/6. curves), saddle point (red star). Middle: Simulated learning dynamics. Right: Norm of the weights over time for each simulated run.
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e Fixed pOil’ltZ wt = )\L—l—s line in each plot corresponds to a simulated run with small initialised weights. Intelligence Research (CAIR), South Africa, for financial support.
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