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Critical initialisation for deep signal propagation
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Contributions

•We extend the mean field framework developed by Poole et al. (2016)

and Schoenholz et al. (2017), to describe noisy signal propagation in

fully connected feed-forward neural networks.

•We derive variance critical weight initialisation strategies for noisy ReLU

networks, suitable for a wide range of noise models.

•We describe the limitations to information flow as a result of noise by

studying signal correlation dynamics.

1. Noisy signal propagation
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We study signal propagation of an in-

put x0 ∈ RD0 to a noise regularised

deep ReLU network at initialisation,

where the weights W l ∈ RDl×Dl−1 and

the biases bl ∈ RDl are randomly

sampled at each layer l = 1, ..., L.

2. Critical initialisation for noisy ReLU networks
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Sampling the weights and biases from

zero mean Gaussian distributions with

pre-specified variances σ2
w/Dl−1 and

σ2
b , we use the mean field assumption

to approximate the distribution of the

pre-activations at each layer l, in the

large width limit, by a zero mean

Gaussian with variance q̃l. Therefore,

each h̃li ∼
√
q̃lz, where z ∼ N (0, 1). The fixed point of the variance recur-

rence (red block) gives the critical initialisation as (σw, σb) =
(√

2
µ2
, 0
)

,

where µ2 is the second moment of the noise distribution.

Initialisations for noisy ReLU

Noise p(ε) critical init

Gaussian N (1, σ2
ε) (σw, σb, σε) =

(√
2

σ2ε+1, 0, σε

)
Laplace Lap(1, β) (σw, σb, β) =

(√
2

2β2+1, 0, β
)

Poisson Poi(1) (σw, σb, λ) = (1, 0, 1)

Dropout
p(ε = 1

p) = p,

p(ε = 0) = 1− p (σw, σb, p) = (
√

2p, 0, p)

3. Initialisations for different noise types
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Figure 1: Variance propagation for noisy ReLU.
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Figure 2: Variance critical boundary.

For schemes not initialising at criti-

cality, the variance map in Figure 1

(a) lies off the identity line and the

variances in (b) either explode, or van-

ish. The critical initialisation lies on

the boundary between these two ex-

tremes, (as shown in Figure 2) and

preserves the signal in (b) through-

out the forward pass with roughly con-

stant variance.

4. Correlation dynamics
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We further study the dynamics of cor-

relation c̃lab between two inputs xa and

xb. At large depth, inputs end up uni-

formly correlated irrespective of their

starting correlation, as shown in Fig-

ure 3 (a) and (b). Therefore, random

deep ReLU networks lose discrimina-

tory information about their inputs as

the depth of the network increases.
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Figure 3: Correlation dynamics for noisy ReLU.

5. Experiments with dropout on real-world data

A random network loses useful information more quickly when injected with

noise, therefore we examine trainable depths on MNIST using dropout.
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Figure 4: Depth scale experiments on MNIST.

Please scan the following
QR-codes for additional
results in the paper, source
code and our video.
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Takeaways

•When using multiplicative noise (e.g. dropout) to regularise a deep ReLU

network, initialising the weights and biases from normal distributions

with standard deviations (σw, σb) =
(√

2
µ2
, 0
)

(where µ2 is the second

moment of the noise distribution), ensures reliable signal propagation.

•However, even at criticality, noise causes the correlation between signals

to decay with increasing depth and this limits the depth at which noisy

ReLU networks are able to perform well.
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