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Introduction Word segmentation of speech

» Current supervised speech technology is built using hundreds of hours of
transcribed speech data and pronunciation dictionaries.

_ _ Acoustic model

» For many languages, these resources are simply not available. A c
» We present an unsupervised Bayesian model which segments speech into = E
word-like segments and clusters these into hypothesized word types. Embeddings _cg 3
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||l » Acoustic modelling and segmentation are performed jointly: Bayesian GMM

provides likelihood terms for segmentation; segmentation hypothesizes the
boundaries for the word segments which are clustered.

» |Implemented as a blocked Gibbs sampler with dynamic programming.

Results
Dataset Table: Development and test set WERs (%). 0
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» We evaluate our model in a connected digit recognition task. Model Dev.  Test
- . Constrained*® discrete HMM S N I T o
» Use the [1Digits corpus. Development and test sets each contain: 32.1 - g ol o N
. [Walter et al., ASRU 2013] c
112 speakers (male and female), 77 digit sequences per speaker. e
Average constrained Bayes 211 272 = | o .
» The corpus contains 11 word types: ‘oh’ and ‘zero’ through 'nine.. VErag y ' ST IO U S NG
Highest prob. constr. Bayes 11.2 20.8 —— . . .
0He vtp | o &
. Avg. unconstrained™ Bayes 20.7 32.3 ® Orace | | | |
Evaluation : ° 08 0.9 1.0 1.1 1.2
Highest prob. unconstr. Bayes 20.6  32.3 Model score log p(X. 720, B) X107
» Compare unsupervised decoding output to ground truth transcriptions: map *constrained refers to models limited to K = 11 clusters; unconstrained allows up to K = 100

each discovered cluster to a ground truth label.

» From this we can calculate unsupervised word error rate (WER).

» Compare to a previous study by Walter et al. [ASRU, 2013]: discrete hidden

Markov models (HMMs) were trained unsupervised. 3 i — two
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= el%ht ) ) The model used all K = 100
nine 1 components, but it's 13
_ _ oh - ] biggest clusters cover more
@ Every word type is modelled as a mixture component of zeot .. - than 90% of the data.
" s a Bayesian Gaussian mixture model (GMM) with fixed 33 12 47 60 66 27 aé:? 5t1 |9§ 38 63 14 89 24 85
uster

spherical covariance o°1.

a /GD Consider two settings for the number of components K Conclusions

1. Constrained: K = 11 is true number of word types.

L K . . .
; 2 Unconstrained: Model left to discover the number > Present.ed a novel Ba.ye5|an mod.el for sggmentmg and clustering unlabelled
7 of word types up to a maximum of K = 100. speech into hypothesized word-sized units.
N » Achieved improvements over previous study using unsupervised HMM.
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