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Embedding-based query-by-example (QbE) Keyword spotting results
Exact QbE results (%):
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Semantic QbE results (%):
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search database:

Examples of query acoustic embeddings
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Embedding search utterances: Two options

‘burning’
e FAST: Embed and compare query and

search utterances as single vectors.
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Main idea

¢ DENSE: Embed and compare queries to _ . T e >, - R =5 |
sub-segments within search utterances | | R R
(ShOWﬂ on right). Embedding of ‘soccer’. Embedding of ‘yellow'.

Powerful multi-label visual taggers are available.
Tag training images with text labels using external visual tagger.
Use as targets for a speech convolutional neural network (CNN).

The output of the CNN is an acoustic embedding, which can be used CO“C'USIOHS

for embedding-based QbE.

Does not require any transcriptions: Low-resource speech technology.

Experimental details

e Visual grounding makes it possible to perform semantic QbE without
e Data: 8000 images tagged with 5 English spoken captions (~37 h). any transcribed speech data.

Here we simulate low-resource setting using unlabelled English data. e Weak labels: Visual tagger trained on Flickr30k and MSCOCO. e Future: Apply approach to a truly low-resource language.
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