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Abstract—For many languages, there is little or no labelled
speech data available for training speech processing models. In
zero-resource settings where unlabelled speech audio is the only
available resource, speech applications for search, discovery and
indexing often need to compare speech segments of different
durations. Acoustic word embeddings are fixed dimensional rep-
resentations of variable length speech sequences, allowing for
efficient comparisons. Unsupervised acoustic word embedding
models often still retain nuisance factors such as a speaker’s
identity and gender. Here we investigate how to improve the
invariance of unsupervised acoustic embeddings to speaker and
gender characteristics. We assume that speaker and gender
labels are available for the untranscribed training data. We then
consider two different methods for normalising out these factors:
speaker and gender conditioning, and adversarial training. We
apply both methods to two unsupervised embedding models:
a recurrent neural network (RNN) autoencoder and a RNN
correspondence autoencoder. In a word discrimination task, we
find little benefit by explicitly normalising the embeddings to
speaker and gender on English data. But on Xitsonga, substantial
improvements are achieved. We speculate that this is due to the
higher number of speakers present in the unlabelled Xitsonga
training data.

I. INTRODUCTION

Recent research in speech technology has started to con-
sider how systems can be developed in the absence of any
transcribed speech resources [1]-[4]. The field of developing
speech models solely from unlabelled speech data is referred
to as zero-resource speech processing. A number of different
applications have been developed in this area, including query-
by-example search, where the goal is to search over utterances
for a given spoken query [5], and unsupervised term discovery
(UTD), where the goal is to discover reoccurring speech pat-
terns in a set of untranscribed speech [6]. These type of appli-
cations require comparing speech segments of variable length.
The conventional method used to do this is dynamic time
warping (DTW) which involves finding optimal alignments
between speech segments. This method, however, has known
limitations, including being computationally expensive [7].

Recent studies have therefore started to explore methods for
finding acoustic word embeddings of variable length speech
segments in a fixed dimensional space [8]-[15]. The idea
is that these acoustic embeddings should capture and con-
dense the information in a speech segment that is useful for
downstream speech processing tasks. Since arbitrary length
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speech segments are represented in a fixed-dimensional space,
comparing segments becomes a simple distance calculation be-
tween embeddings. Many of these studies focus specifically on
the zero-resource setting, proposing and investigating different
unsupervised methods [10], [12], [13].

The acoustic properties of speech across different speakers
and people of different genders' vary dramatically. Since the
acoustic embeddings, in our case, are learned from unla-
belled speech, these properties could still be captured to a
large extent in the embeddings. This can lead to a scenario
where embeddings for different words from the same speaker
can be more similar than embeddings representing the same
word from different speakers, and similarly for embeddings
from people of different genders. We therefore refer to these
properties as nuisance factors. Building on the work of [10],
we investigate methods to make unsupervised acoustic word
embeddings more invariant to these nuisance factors.

We consider two encoder-decoder recurrent neural network
models: the encoder-decoder autoencoder (AE-RNN), first
introduced in [13], and the encoder-decoder correspondence
autoencoder (CAE-RNN), introduced in [10]. The input to
these models are speech segments encoded as sequences of
mel-frequency cepstral coefficients (MFCCs). The AE-RNN
is trained to reconstruct a input sequence based on a latent
variable produced by the encoder. Rather than reconstruct-
ing the input itself, the CAE-RNN is trained to reconstruct
another instance of the same word. Since the training data
is unlabelled, these input-pairs for the CAE needs to be
obtained in an unsupervised manner. For this purpose, we use a
UTD system which automatically finds similar patterns in the
unlabelled audio [16]. For both the AE-RNN and CAE-RNN,
the intermediate latent variable is then used as an acoustic
word embedding.

To improve invariance to speaker and gender identity,
we assume that these properties have been annotated in an
unlabelled speech training set. Coarse annotations such as
speaker identity and gender would presumably be much easier
to obtain than full transcriptions. Using speaker and gender
labels, we consider two approaches to improve robustness in
unsupervised acoustic word embedding models: conditioning
the decoder component of the AE-RNN or CAE-RNN on a

'In this paper we make use of the term gender instead of sex in order to
be consistent with the terminology used in the released corpora.
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trained speaker/gender embedding, and using an adversarial
approach where an additional loss encourages the intermediate
representation to be a poor signal for speaker or gender
classification.

We evaluate the different approaches on two languages by
measuring the intrinsic quality of the acoustic word embed-
dings from each model in a word discrimination task. The
speaker and gender information retained in the embeddings
are analysed by training separate speaker and gender classifiers
on top of the trained embeddings and evaluating the resulting
speaker/gender classification accuracy. We show that in both
the AE-RNN and CAE-RNN, conditioning models on speaker
and gender information or using adversarial training leads
to a reduction in some of the information captured by the
acoustic word embeddings. However, for the English dataset,
the intrinsic quality of the embeddings are only marginally
improved. The intrinsic quality of Xitsonga embeddings show
greater improvement. We speculate that this is due to the
larger number of speakers occurring in the unlabelled training
data for this language. Of the two normalisation approaches,
we find that adversarial training produces better results for
the AE-RNN, but speaker/gender conditioning produced better
results for the CAE-RNN. We also find that the approaches
are complimentary and can be combined.

II. PROPOSED METHODOLOGY
A. Encoder-Decoder Recurrent Neural Networks

An encoder-decoder recurrent neural network architecture
is used as base for our models [17]. The encoder and de-
coder parts each consist of a stack of recurrent neural net-
works (RNN). The encoder maps input sequences of variable
length into a fixed dimensional latent variable. This latent
variable could be the last hidden vector of the last RNN, but in
our case we add a linear layer after the encoder to transform
the last hidden vector into the latent variable. The decoder
then maps the latent variable to an output sequence. In our
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models, we use stacks of three gated recurrent unit (GRU)
networks for both the encoder and decoder [18]. We use one
linear layer after the encoder to produce the latent vector, and
then another linear layer after the latent vector which then
feeds into the decoder. The latent vector is used as the acoustic
word embedding.

We experiment with an encoder-decoder autoencoder RNN
(AE-RNN) and an encoder-decoder correspondence autoen-
coder RNN (CAE-RNN). The AE-RNN is trained to map a
sequence to a latent vector, which in turn is used to condition
the decoder which is trained to reconstruct the original input
sequence [13], [19]. Let the AE-RNN model be denoted by
fag. For a given input sequence X = x1,Xo, ..., X1, , Where
Tx is the length of the input sequence, the reconstructed
sequence is X' = fag(X), where X' = x/1,%x'o, ..., X1y
The loss function applied to one input sequence is as follows:

Lag = || X — X'||? (D

Instead of reconstructing the input itself, the CAE-RNN is
trained to reconstruct another instance of the same word as the
input. Since our training data is unlabelled, we use an unsuper-
vised term discovery (UTD) system to automatically discover
speech segments which are predicted to be of the same type.
The UTD system outputs pairs of sequence (X,Y), predicted
of the same type, with X as above and Y = y1,y2,....,¥1y -
Ty is the length of Y.

For a given pair, the CAE-RNN is trained to map a sequence
X to a latent variable and then to map the latent variable to Y
[10]. Let the CAE-RNN be denoted by fcag. Then the decoded
sequence is Y’ = fcag(X), where Y/ = y'1,y'o, .,y 7,
The loss function applied to one input pair is as follows:

Leag = ||Y = Y/|? 2

The intuition behind the CAE-RNN is that the model learns
to only encode the information into the latent variable that is
common between the input-output speech segments (such as
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Fig. 1. The architecture of both the AE-RNN and CAE-RNN. The AE-RNN will decode the embedding into X’ and the CAE-RNN will decode it into Y.
If the model is conditioned on speaker or gender information, the information is appended to each time step’s input for the first GRU in the decoder.
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the word identity) while normalising out factors that are not
common. The weights of the CAE-RNN are initialised with
the weights of a trained AE-RNN. The structure of both the
AE-RNN and CAE-RNN is shown in Fig. 1.

B. Reducing Nuisance Factors

There has been a number of studies that propose methods
that make the training of speech processing models more ro-
bust to nuisance factors [20]-[25]. Speech consists of linguistic
and acoustic properties. For a set of utterances consisting of
the same word or phrase, but spoken by different speakers, the
linguistic content will be the same, but the acoustic properties
can differ. We refer to the acoustic properties that relate to
factors that are invariant to the linguistic content as nuisance
factors. Speaker and gender differences are examples of such
nuisance factors.

We investigate two different methods to reduce the speaker
and gender information contained in acoustic word embed-
dings: speaker and/or gender conditioning, and speaker and/or
gender adversarial training.

1) Speaker and Gender Conditioning: In the first approach,
we hypothesise that conditioning our decoder on the target
speaker and/or gender information will make the model less
reliant on speaker and/or gender information, specifically in
the encoder. This means that the resulting latent variable will
(hopefully) be more invariant to the speaker and/or gender
information. We create an array of trainable embeddings for
each target speaker and gender in our training set. During
training, we append this embedding to the decoder input at
each time step. Fig. 1 illustrates where in the model the
conditioning vector will be added.

2) Adversarial Training: In the second approach, we inves-
tigate penalising the model for retaining speaker and gender
information inside the acoustic word embedding by adversari-
ally training the models against a speaker or gender classifier.
The classifier is a feed-forward neural network (FNN) trained
to classify either speaker or gender from an acoustic word
embedding. Let NV be the number of speakers in the training
set or the number of genders and p = pi,...,pNy the set
of probabilities for each class returned by the classifier. For
a given input latent variable with the true class ¢, the loss
function applied to both classifiers is as follows:

N
Le = —pe +log(D _ log(exp (p;)) 3)
i=1
This is an instance of the multiclass log loss. The structure of
the classifier can be seen in Fig. 2.

Before the models are adversarially trained against the clas-
sifier, we train them using the losses in (1) or (2), respectively,
for m epochs, where m is a hyperparameter. Then the classifier
is trained on the embeddings produced by the models after m
epochs for n epochs, where n is also a hyperparameter. We
then set up two turns, turn A and turn B, for each epoch.
During turn A, the weights of the classifier are frozen and
we train the model (the AE-RNN or CAE-RNN) as usual but
also penalise it for speaker or gender information contained

.Linear |:| ReLU |:| Dropout |:| Softmax

Fig. 2. A FNN that will map an acoustic word embedding, z to a list of
speaker or gender class probabilities, p

in the embedding. During turn B, the weights of the AE-RNN
or CAE-RNN model are frozen and we update the weights of
the classifier by training it for one epoch on the most recently
produced embeddings.

The loss function applied to the adversarially trained AE-
RNN is as follows:

Lag-aav = Lag — vLc 4

where Lag is as in (1), L¢ is the classification loss and
v is a hyperparameter representing the weight factor of the
classification loss.

The loss function applied to the adversarially trained CAE-
RNN is as follows:

Leag-adv = Leae — vLe )]
where Lcag is as in (2) and L¢ and v is again a weighing
factor. The adversarial process is illustrated in Fig. 3.

III. EXPERIMENTS

A. Experimental Setup

We train our models on data sets from two languages:
English, from the Buckeye corpus [26], and Xitsonga, from
the NCHLT corpus [27]. To discover pairs of speech segments
we use the UTD-system [16]. This allows our training to
remain independent of speech transcription labels. The English
training set contains around 14k unique pairs from 12 different
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Fig. 3. The adversarial training process consists of two turns, turn A and turn
B. During turn A the AE-RNN or CAE-RNN is trained and during turn B,
the classifier is trained.
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speakers of which 6 are male and 6 are female. The Xitsonga
training set contains around 6k unique pairs with 24 different
speakers of which 12 are male and 12 are female. The speech
segments from the data sets are transformed to sequences of
13-dimensional Mel-frequency cepstral coefficients (MFCCs)
with a maximum sequence length of 100.

We follow the model setup of [10]. The dimension of the
latent variables is set to 130. All the hidden units in the GRUs
of the AE-RNN and CAE-RNN (Fig. 1) have a dimension of
400. We found 50 to be the smallest dimension that achieves
the best results for the speaker and gender embeddings. We
use learning rates of 0.001 and 0.0001 for the AE-RNN and
CAE-RNN, respectively, and both models use a batch size
of 256. We use the Adam optimiser [28]. For the English
dataset, we train the AE-RNN for 150 epochs and the CAE-
RNN for 25 epochs and use early-stopping on validation data.
For the Xitsonga dataset, we do not have validation data, so we
average the number of epochs that it takes to produce the best
models on the English validation data, which is 115 epochs
for the AE-RNN and 19 epochs for the CAE-RNN.

During adversarial training, the AE-RNN or CAE-RNN
is initially trained for 50 epochs and then the classifier is
trained for 100 epochs. For the classifier (Fig. 2) we use
a learning rate of 0.001, a batch size of 50 and the Adam
optimiser. All three linear layers in the classifier have a
dimension 200 and we use a dropout rate of 0.5. During turn
A, v = 0.0001 x the epoch number for the AE-RNN and
v = 0.01 x the epoch number for the CAE-RNN.

B. Evaluation

We want to investigate the speaker and gender information
contained in the acoustic word embeddings produced by the
AE-RNN and the CAE-RNN and ultimately compare all
the embeddings to see if this information is reduced with
speaker and/or gender information or with speaker or gender
adversarial training. We measure the speaker predictability
(SP) and gender predictability (GP) of the embeddings by
training a speaker or gender classifier to predict the speaker
or gender class of the embedding and evaluating the accuracy.
We use the same classifier model as in section II-B2. Note that
these models are trained after all model training is complete;
these classifiers are therefore used as a way to analyse the
resulting embeddings to measure the predictability of speaker
and gender.

We use the same-different task to evaluate the intrinsic
quality of the acoustic word embedding (latent variables) [29].
Two embeddings are similar when the distance between them
are less than a certain threshold. By varying thresholds, we
create a curve of precision versus the recall. The average
precision (AP) of the embeddings is the area under this curve.
We consider the AP values to measure the quality of the
acoustic word embedding, where higher values are better.

C. Results

We select the two AE-RNN and the two CAE-RNN models
that obtained the highest AP scores on the English validation
dataset. We evaluate these models on the English and Xitsonga
test set along with the baseline AE-RNN and CAE-RNN
(the models without any nuisance factor reducing methods

TABLE 1
ENGLISH EVALUATION RESULTS

Model Conditioning Adversarial Results
AE CAE  Speaker Gender Speaker  Gender AP SpP GP
* - 25.19+0.44 74.89+0.21 95.07+0.27
* * * - * 25.53 + 0.46 64.36 = 1.5 89.52 + 0.27
* - 25.38+0.43 7489+ 1.11 93.38+0.47
- - - 30.18£0.34 7559 £1.06 93.59+0.6
- * - * - 30.49+1.41 64.124+0.76 90.14 £0.7
- - * * 29.72+0.76  66.05 £1.19  90.51+0.0
TABLE II
XITSONGA EVALUATION RESULTS
Model Conditioning Adversarial Results
AE CAE  Speaker Gender  Speaker  Gender AP SP GP
* - 11.65£0.34 62.33+0.94 94.23 £0.51
* * * - * 12.78 +1.18 48.39+0.39 87.39+0.62
* - * 11.22 £0.7 60.58 + 2.82 92.67+0.2
- - - - 22.52 +0.29 54.58 + 1.0 94.52 +0.13
- * - * - 28.98+0.36 40.28+0.68 88.93+0.53
- * * 22.72+£1.93 52.57+2.01 89.3+0.51
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Fig. 4. A scatter plot of the average precision vs. the speaker predictability
on the AE-RNN
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Fig. 5. A scatter plot of the average precision vs. the gender predictability
on the AE-RNN

applied). The results can be seen in Table I and Table II,
respectively.

As can be seen in the second and third row of Table
I, the nuisance factor normalisation only shows marginally
improved scores compared to the baseline AE-RNN, in the
first row. Compare the fifth and sixth row with the fourth
row, we see that the normalisation also only shows marginal
improvement with a combination of speaker conditioning
and gender adversarial training and gender conditioning with
gender adversarial training shows marginally lower scores
compared to the baseline CAE-RNN. The highest AP score
was produced by the CAE-RNN with speaker conditioning
and speaker adversarial training applied together.

For the Xitsonga data, seen in Table II, when comparing
the second row to the baseline AE-RNN in the first row,
we see still only small improved score, but the improvement
is larger than with the English dataset. The CAE-RNN with
speaker conditioning and speaker adversarial training applied
together, in the fifth row, scores 22% higehr than the baseline
CAE-RNN, in the fourth row. The reason for this model
outperforming the baseline model significantly more than with
the English model could be because there are twice as many
speaker in the Xitsonga training set as in the English training
set.

D. Average Precision and Nuisance Factor Correlation

We investigate the correlation between the speaker pre-
dictability and average precision and the gender predictability
and average precision. We analyse the results for all the
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Fig. 6. A scatter plot of the average precision vs. the speaker predictability
on the CAE-RNN
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Fig. 7. A scatter plot of the average precision vs. the gender predictability
on the CAE-RNN

configurations of both the AE-RNN and CAE-RNN on the
English validation dataset. In Fig. 4 and Fig. 5 we see these
results on the AE-RNN. It seems like there is no correlation
between the AP and SP or GP for the AE-RNN. In Fig. 6 and
Fig. 7 we see the result for the CAE-RNN model. It seems
like there is potentially a very weak correlation between the
AP and SP or GP for the CAE-RNN model. The SP and GP
scores for the AE-RNN and CAE-RNN are similar, yet the
CAE-RNN shows a slight correlation between AP and SP or
GP where the AE-RNN does not.

Taken together, these trends seem to indicate that
well-performing embeddings in terms of AP still capture
speaker/gender information (at least to a degree where a non-
linear classifier can extract this information). Future work will
consider a finer-grained analysis of the embeddings.

IV. CONCLUSION

We have trained encode-decoder autoencoder recurrent neu-
ral networks (AE-RNN) and encoder-decoder correspondence
autoencoder recurrent neural networks (CAE-RNN) with and
without speaker/gender conditioning and with or without a
penalising loss term in an adversarial approach. For the
English data, applying these nuisance factor reducing meth-
ods only shows marginally higher average precision scores.
However, the CAE-RNN model trained on Xitsonga with
speaker conditioning and speaker adversarial training shows
an approximately 22% higher average precision score.

Future work will consider training models on datasets with
a larger number of speakers. It will also look at more ways
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to analyse the acoustic word embeddings, for example, using
a linear classifier instead of a non-linear one to measure the
speaker and gender predictability of the embeddings.
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