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Abstract—We ask whether a reinforcement learning agent
learns better by first learning the skills to perform smaller tasks
in a complex environment or by learning the skills in the complex
environment from the start. This is investigated empirically in a
non-trivial game environment. We use the premise of curriculum
learning where an agent learns different skills in independent
and isolated environments referred to as dojos in this paper. The
skills learned in the dojos are then used as different actions as
the agent decides which skill to perform that best applies to the
current game state. We evaluate this with experiments conducted
in the Minecraft gaming environment. We find that dojo learning
is able to achieve better performance with faster training time
in certain environments. The main benefit of this approach is
that the reward functions can be finely tuned in the dojos for
each action as compared to the traditional methods. However, the
skills learned in the individual dojos become the limiting factor
in performance as the agent is unable to combine these skills
effectively when put in certain complex environments. This can
be mitigated if the dojo modules are further trained to result in
similar results as the standard method.

Index Terms—Curriculum learning, Reinforcement learning,
Minecraft, Project Malmo

I. INTRODUCTION

The aim of having an agent perform well in a challenging
environment using reinforcement learning is a long standing
goal for researchers. Many ideas, frameworks and algorithms
have been proposed. In this work we specifically consider the
open-world game of Minecraft.

Minecraft is a popular 3D sandbox game in which players
gather resources and build with a variety of blocks in a
procedurally generated environment. During the night, mobs
(dangerous creatures such as zombies) roam the environment
with the players choosing to either avoid them or fight. Sur-
viving in the world of Minecraft requires mastery of various
actions, including complex combinations of primitive actions
or actions with specific time frames.

In order to survive, our agent will have to master a set of
skills and gather knowledge of various aspects of the open-
world. Will it be beneficial for the agent to learn solely on
its own by being thrown in at the deep end, or should we
allow the agent to learn in simpler sub-environments which
are known to occur in the complex environment (the complex
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environment is defined to be all sub-environment tasks in one
environment)?

With Minecraft being a popular game worldwide, it has
grasped the interest of many researchers. It provides a simple
platform where experiments can be conducted in reinforcement
learning (RL). Microsoft saw potential in this gaming environ-
ment and developed Project Malmo [1] to provide a platform
for researchers to explore RL algorithms. There are numerous
mini-game environments included in Project Malmo, but the
overall goal remains to have an agent perform well in the
entire unrestricted world of Minecraft.

The goal of this paper is to compare our new network
architecture where an agent learns more complex actions in
simpler environments to the current standard of RL. The
premise of these independent and isolated training environ-
ments, hereafter referred to as dojos, stems from humans
learning in classrooms. The word dojo is a Japanese term
directly translating to “place of the way” and is a training
facility primarily referring to training of Japanese martial arts.

We begin with an overview of the game of Minecraft in the
context of RL and why we use Project Malmo. We then discuss
the basics of RL, Markov Decision Processes (MDPs), and Q-
learning — a common RL algorithm for gaming environments.
We consider a simplified Minecraft environment where an
agent must acquire three different skills, namely gathering,
avoiding and exploring, in order to succeed. We compare
the agent learning these skills separately in different sub-
environments and using these learnt skills in the complex
environment against learning these skills in the complex
environment from the start. In our approach we discuss the
network’s input and architecture. The results show that our
approach is effective and the agent achieves better performance
in certain environments, and can achieve at least equal results
in all environments tested. Some future work will be discussed
to improve on the drawbacks of this method. Lastly, some
related work is discussed.

II. BACKGROUND
A. Minecraft

The open-world game of Minecraft is a popular sandbox
game as described in Sec. I. Although there is a main objective
in Minecraft, players often choose their own path — from
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building masterpieces to speed running by finishing the game
in the shortest time. This variety of play styles has made it a
promising research area especially in the realm of RL.

We use environments based on Microsoft’s Project Malmo
in the world of Minecraft. This allows us to create a simple
environment with multiple sub-tasks to reach the ultimate goal
as well as have full control over the design of the environment
and the choice of tasks that can be learned independently of
one another. This makes Minecraft an ideal world to run our
experiments and test our hypothesis that learning simple skills
in dojos and applying them in a complex environment is better
for an RL agent, as opposed to learning the complex skills
from scratch in a complex environment.

B. Reinforcement Learning, MDPs and SMDPs

In the field of probability and statistics, the Markov property
expresses that the future is independent of the past, given
the present as shown in [2], [3]. The current state of an
environment completely characterises the position and con-
dition of all entities and objects within that world. Given an
environment with the Markov property, only the current state
and an appropriate action is needed to determine the next state.

A Markov Decision Process (MDP) describes an RL en-
vironment and is defined by the tuple (S, 4, R, P,~), with S
being the set of possible states of that environment, A referring
to the set of all possible actions an agent can perform, R is the
distribution of the rewards given and is dependent on the state
and action performed, P is the transition probability between
states, and -y is the discount factor and describes how the agent
values future rewards.

In a Semi Markov Decision Process (SMDP), the actions
have duration. This is referred to as transition time (7). In
an MDP however, the transition from one state to another is
instantaneous. The options framework defines an SMDP [4],
and Dojo learning is closely related to the options framework.
Therefore the theory of SMDPs provide a good basis for dojo
learning.

C. Q-Learning

Reinforcement learning is a subsection of machine learning
where the agent interacts with an environment, receiving an
observation of the environment and a delayed feedback for its
actions in the form of scalar rewards. This process can be seen
in the RL loop in Fig. 1.

There are numerous methods and algorithms for RL, how-
ever we will be focussing on the model-free off-policy algo-
rithm of Q-learning, which is a value-based algorithm using
the Bellman optimality equation: V7(s) = R(s,7(s)) +
¥>  P(s,m(s),s)V™(s") (1). This is then reworked to obtain

the Q-learning equation: Q(s,a) = Q(s,a) + a[R(s,a) +
ymax Q'(s’,a’) — Q(s,a)] (2) which is an iterative equation
updaating the Q values of the model [5], [6]. The goal is to
maximize the expected cumulative reward.

In Egs. (1) and (2), s is used for the state of the environment,
some equations use o instead to represent the observation of
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Fig. 1: The Reinforcement Learning (RL) iterative interaction
cycle. The Agent performs an action, a;, given the current
state, s;, of the environment at time ¢. The Environment then
reacts to this action and the Agent receives a scalar reward,
r¢, based on the action taken, as well as receiving the next
state, sy+1. This cycle is repeated during the learning process.

i1~ Agent - "Steve"

@*Diamond
.*Zombie
m* Lava

#— Obstacle

(a) Minecraft in PyGame - Python version

(b) Project Malmo - Java version

Fig. 2: The same environment represented in both Python’s
PyGame library and Microsoft’s Project Malmo.

the agent. For this explanation we will assume that the environ-
ment is fully observable; the observation the agent receives can
represent the entire current state of the environment (s = o).

We will be using a policy (7) known as epsilon-greedy (e-
greedy) for exploration in the environment. This allows our
agent to not only make the best action in a certain state, but
also random actions to ensure we explore the environment and
increase the likelihood that the chosen action is best overall.

IIT. ENVIRONMENT SETUP

Training an agent in Project Malmo is time intensive due to
the platform’s complexity. To speed up the research we create
the necessary aspects of Minecraft in a Python environment
using PyGame [7] for training. The trained network can be
transferred to run in Project Malmo in the same environment
setup as shown in Fig. 2.

Two types of environments are created, a simple environ-
ment represented by Fig. 3a with ten diamonds to collect and
one zombie to outrun, and a complex environment represented
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(a) Simple Environment (b) Complex Environment

Fig. 3: Two different environments tested for results to show
scalability as well as simple versus complex environment
behaviour.

(a) Diamond Dojo (b) Zombie Dojo

(c) Explore Dojo

Fig. 4: The different dojo environments in which the agent
trains in this experiment.

by Fig. 3b with ten diamonds, two zombies and the introduc-
tion of obstacles and lava to manoeuvre around.

The agent needs three different skills in order to succeed
in the complex environment created, therefore three dojos
are used to learn these skills in isolated environments —
gathering diamonds (Fig. 4a), avoiding the zombies (Fig. 4b)
and exploration (Fig. 4c). For the simple environment only
the diamond and zombie skills are used, which is similar to a
hierarchical task network (HTN) [8]. One episode consists of
a maximum of 100 time steps. For each time step the agent
has a choice to do nothing, move up, down, left or right.
During the episode, the agent must collect as many diamonds
as possible, explore an environment without dying in lava and
avoid zombies that move towards it using the A* path finding
algorithm [9].

IV. APPROACH

In the experiments we set out to show the feasibility of our
DOJO NETWORK to help an agent perform better in a complex
environment. The DOJO NETWORK, shown in Fig. 5, consists
of two main parts. The first is the META MODULE. This
module decides which dojo skill the agent should reference
given the current state of the environment. The second part
consists of different DOJO MODULES. These modules are
trained independently in a simplified environment and frozen',
and using transfer learning the trained modules are transferred
into the appropriate DOJO MODULES.

The specific deep Q network’s architecture used for our
experiments is simple but can easily increase in complexity if
needed. We show a proof of concept here, and will explore
more complex architectures and algorithms in future work.

!Frozen: Refers to the model’s weights being fixed or unchanged when the
rest of the network is being trained.

Each DOJO MODULE has the same network architecture with
the same five possible actions as outputs seen in the output
layer in Fig. 5: move up, down, left, right or do nothing.
However, these actions can be different entirely with one set of
output actions from a DOJO MODULE having the primitives” to
jump over obstacles and another having a set of primitives to
craft items. This is combined using a META MODULE with
the same main architecture shown in the module block in
Fig. 6 and the different dojos as its output. Each time a DOJO
MODULE is selected, the appropriate input state (i.e. a state
configuration with which that dojo is trained) is then passed
over to that trained DOJO MODULE and the best action in that
set is chosen. This DOJO MODULE choice occurs at every time
step. This approach is similar to the options framework, where
one can think of the META MODULE deciding which policy the
agent should follow for the current time step.

The network’s architecture displayed in Fig. 6 consists
of two convolutional layers with two fully connected layers
giving the output of five possible actions. Given that using data
from raw pixels is computationally expensive, we manually
extract the required features for the input state given to the
network. The input to the DOJO NETWORK, represented in
Fig 7, can be anything from the agents coordinates to the
raw RGB values of the screen, as long as the different DOJO
MODULES receive the identical input when training. In our
case we manually extract the positions of various blocks of
interest (BOI) and arrange it in an expandable way. This is
done to allow us to easily enlarge the area of interest as well
as add complexity by increasing the number of BOIs the model
can interpret. A binary-style grid represents the positions of
the BOI, with each layer representing a different block type
such as cobblestone or lava, or an entity such as a zombie or
diamond. The grid is fixed around the position of the agent
with odd value dimensions to ensure the midpoint of the grid

ZPrimitives: Basic actions such as move right, jump up, etc.

Output
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—
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Fig. 5: DOJO NETWORK architecture: This network has three
DOJO MODULES, each having its own set of five possible ac-
tions. The number of possible outputs for the DOJO NETWORK
is the number of unique actions that the DOJO MODULES have.
The META MODULE decides which DOJO MODULE will decide
on the next action.
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Fig. 6: The network architecture used for DOJO NETWORK and
STANDARD Q NETWORK
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represents the agent.

V. EXPERIMENTS

We compare the DOJO NETWORK to a traditional Deep Q
Network (DQN) [10], which we refer to as the STANDARD Q
NETWORK, in the Minecraft gaming environment. These are
compared in both a simple and complex environment as shown
in the environment setup in Sec. III.

The DOJO MODULES are trained beforehand in the simpler
environments shown in Fig. 4 with just the input that affect
those particular skills. In the case of gathering diamonds, the
dojo is trained without a zombie present. This allows the
reward function for that dojo to be refined and suited to that
specific scenario. Once all the dojos are trained for 100,000
episodes, the networks are fixed (i.e. no longer trainable) and
added to the output of the META MODULE which is trained
for a further 100,000 episodes.

After the DOJO NETWORK is trained, with each MODULE
having 100,000 training episodes, the DOJO MODULES are
unfrozen® and the entire DOJO NETWORK is trained for a
further 200,000 episodes. The amount of training episodes
are an order of magnitude less for the simple environment
experiments.

3Unfrozen - The weights are no longer fixed and the model is allowed to
be trained further.

©asas)

Steve

Diamonds
Zombies
History
Lava

Obstacles

Fig. 7: Network input: Each layer of the 3-dimensional array
represents a unique block of interest (BOI) in the grid world
environment. A ‘1’ if the BOI occupies this space and a ‘0’
otherwise. The values are placed in relation to the agent’s
position which is always represented in the center position of
the first layer.

TABLE I: Various STANDARD and DOJO network average
results in different environments (simple: simple environment;
complex: complex environment; new maps: different 10 maps
from training; 16: 16 size grid (with 10 different maps))

Network Moves  Score
Standard (simple) 27.4 7.9
Dojo (simple) 19.9 6.2
Standard (simple - 16) 76.1 5.9
Dojo (simple - 16) 52.6 4.2
Standard (complex) 352 8.1
Dojo (complex) 30.6 7.2
Standard (complex - 16) 51.3 5.5
Dojo (complex - 16) 58.0 52
Standard (complex - new maps) 33.6 6.3
Dojo (complex - new maps) 31.7 5.8

The model’s measure of success is the score received, which
is the number of diamonds collected, and moves taken, which
can be interpreted as the length of time taken to collect the
diamonds or the amount of time surviving the zombies. The
models are tested in the ten unique training environments, as
well as in slightly different complex environment configura-
tions and sizes which were not seen during training. These are
tabulated in the results section, and discussed in Sec. VI.

Also, based on the findings, we conducted two additional
experiments. A “cointoss” experiment, which kept the output
of the META MODULE random, never pre-trained the DOJO
MODULES and simply allowed the entire DOJO network to
train for a total of 300,000 episodes. We also conducted an
experiment that shows the agent in a zombie free environment.
With only the diamond dojo and exploration dojo skills used
in the complex environment layout, this is compared to the
STANDARD Q NETWORK with the same input. The results of
the two additional experiments are discussed in Sec. VL.

VI. RESULTS

The score achieved by the agent is the main value we use
to measure the overall success of the different networks. Of
all the additional data collected during training and run time,
the number of moves taken reveal a key insight to why the
STANDARD NETWORK achieved success. The main results of
these experiments can be seen in Tab. I.

The STANDARD NETWORK outperformed the DOJO NET-
WORK in almost every aspect of training. The first set of
training time graphs in Fig. 8 show the results of the network
being partially “blind” as the input to the DOJO MODULES
is the same input used when the modules are independently
training. Therefore, once the diamond module is chosen as best
skill or “action”, the agent has no knowledge of zombies, and
the zombies layer in the input is zeroed out*. Although looking
promising in the simple network (up to 10,000 episodes), the
complex network reveals the downfall once the network is
unfrozen and the DOJO MODULES are allowed to train at
100,000 episodes. The initial dip in score once unfrozen is
expected as the network could have been in a local optimum,

4Zeroed out: Every position in that layer is made ‘0’ to reflect a similar
training environment.
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but without full awareness of the environment, the agent using
the DOJO NETWORK fails to reach the score of the STANDARD
NETWORK.

A reason for the plateau of the DOJO NETWORK, seen in
Fig. 8b, can be due to the fact that it has fixed DOJO MODULES
as actions for the META MODULE and cannot make small
changes to the DOJO MODULES once exposed to the entire
complex environment. In other words, the agent doesn’t merge
the knowledge of the independent skills, for example it might
avoid a zombie or move towards a diamond, but it can’t avoid
the zombie and move towards a diamond in a single time step.

The second set of training time graphs shown in Fig. 9
show the results of the DOJO NETWORK reading the same
input as the META MODULE, i.e. the full environment. The
results show a lower initial score (compared to the previous
results in Fig. 8) due to the confusion of having a new
input layer trigger while never being exposed to it in the
dojo training. However, once unfrozen, the score climbs to
the results of the STANDARD NETWORK, raising the question
of whether the DOJO MODULES are simply becoming three
identical STANDARD NETWORKS.

These findings led to the “cointoss” experiment which
yielded the expected results shown in Fig. 10a. The random
choice of the META MODULE action made no difference if
all the DOJO MODULES were allowed to train from random
initialisations. As well as having a longer training time, as
there are three separate networks to train compared to one.
This experiment was run to confirm that the worst the DOJO
NETWORK could achieve once unfrozen, was at least equal to
the STANDARD NETWORK.

The other additional experiment with the results shown in
Fig. 10b is a complex environment setup with no zombies.
This proved to be an insightful experiment as the STANDARD
NETWORK never reaches the performance of the DOJO NET-
WORK. It is plausible that the DOJO NETWORK has specific
environments in which it outperforms the STANDARD NET-
WORK based on these results.

VII. CONCLUSION

We set out to show that an agent that learned a subset
of complex actions in a dojo prior to being exposed to
the complex environment might outperform an agent which
is trained in the complex environment from the start. The
evaluated models do not appear to support our hypothesis with
the STANDARD NETWORK outperforming our DOJO NETWORK
in almost every environment. This is unexpected as a similar
hierarchical reinforcement learning approach has been shown
to learn Minecraft tasks [11]. Evaluating the results shows the
DOJO NETWORK is being limited by the chosen individual
modules that are previously learned in isolated dojos and
when the agent is exposed to the complex environment it is
limited by performing those previously learned actions in a
sub-optimal manner. It is possible to match the performance
of the STANDARD NETWORK by allowing the DOJO MODULES
to be trained further in the complex environment.
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(b) STANDARD and DOJO networks, unfrozen at 100k, ¢ = 0.1,
complex environment

Fig. 8: Dojo input states are limited to observations available
when training dojos independently

However, it has shown promise that the DOJO NETWORK
architecture might be viable in specific environments. Despite
the negative results, we believe that by investigating alternative
neural network architectures (such as switching models [12]
and option-critic architectures [13]), DOJO LEARNING could
result in improved performance.

VIII. FUTURE WORK

One of the main limitations the agent currently faces is
the choice in deciding the skills learnt in the different dojos
and then locking the number of skills by predetermining the
number of dojos beforehand. We need to improve the agent’s
method of executing actions and not limit it by our choice
in dojos. It will be beneficial to explore a non-fixed action
structure to learn about the complex environment in a more
efficient manner. We also intend to investigate chosen actions
being executed until a certain termination state is reached (or
for a specific duration), in a manner similar to the options
framework. This could take the form of executing a dojo’s
learnt policy for multiple time steps instead of a different dojo
skill every time step.

We could integrate an additional mosdule or action to
the META MODULE, namely the complex action. This action
could allow the agent to move and act based on the complex
environment when none of the other actions are applicable.
This might boost training time and performance, as well as
not limit the available actions.

We want to determine in which environments the DOJO
NETWORK outperforms the STANDARD NETWORK, and iden-
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entire environment
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(b) No zombies, complex environment
Fig. 10: Additional experiments using the DOJO network as
compared to the STANDARD Q network

tify reasons for these results. Finally, we want to include a
more complex algorithm and architecture, as mentioned in
Sec. IV, and investigate the use of Dueling DQN (DDQN) and
prioritized experience replay as shown in [14] and identify the
impact of these more advanced algorithms and methods on the
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DOJO NETWORK.

IX. RELATED WORK

The Options Framework stems from SMDPs in which the
transition from one state to another has a time duration and
is not instant like in MDPs. Options refer to the combination
of primitive actions which may have an extended duration. It
consists of a policy (), a terminating condition (3) and an
initiation set (/) [15]. Once an option is chosen, and the state is
present in the initiation set, the actions of the agent are decided
on by that options policy, and it terminates after a reaching a
terminating condition, often being a specified duration.

Curriculum Learning is a special case of transfer learning
in which the agent learns smaller, simpler tasks and gradually
builds up complexity in tasks in order to increase the perfor-
mance or learning speed of a more complex task [16]. This
method of learning derives directly from the human education
system.
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