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Abstract
Mutual exclusivity (ME) is a strategy where a novel word is
associated with a novel object rather than a familiar one, facil-
itating language learning in children. Recent work has found
an ME bias in a visually grounded speech (VGS) model trained
on English speech with paired images. But ME has also been
studied in bilingual children, who may employ it less due to
cross-lingual ambiguity. We explore this pattern computation-
ally using bilingual VGS models trained on combinations of
English, French, and Dutch. We find that bilingual models gener-
ally exhibit a weaker ME bias than monolingual models, though
exceptions exist. Analyses show that the combined visual em-
beddings of bilingual models have a smaller variance for familiar
data, partly explaining the increase in confusion between novel
and familiar concepts. We also provide new insights into why
the ME bias exists in VGS models in the first place. Code and
data: https://github.com/danoneata/me-vgs.
Index Terms: visually grounded speech models, language ac-
quisition, mutual exclusivity, multilingual, cognitive science

1. Introduction
The mutual exclusivity (ME) bias is a constraint that young chil-
dren use in language learning, where they prefer to associate
novel words with unfamiliar referents rather than familiar ones.
For instance, if a child hears a novel word aardvark during book
reading, they will naturally map it to the unusual animal in the
picture rather than the ordinary cat beside it. This strategy en-
ables efficient learning by narrowing down the space of possible
referents [1] and has been well-documented in children [2–4].

At the same time, the ME strategy might not apply to the
same extent in bilingual situations, where each object can have
more than one name. Bilingual children therefore generally
show a weaker ME bias compared to monolingual children [5–
7]. But this is not always the case, with results affected by a
child’s age [8,9], their vocabulary [10], the amount of time since
their exposure to the familiar objects [11], and the type of test
used [9, 12]. In short, the big picture of the differences in ME
bias between monolingual and bilingual children is still not clear.

In this study we investigate the bilingual ME bias from a
computational perspective using multimodal machine learning
models. While the ME bias in bilingual learners has not been
studied computationally, there are studies on the monolingual
bias. Most of these use text–image models associating written
words with visual objects; findings are mixed in reproducing the
ME bias [13–15]. Very recently, ME has been studied in visually
grounded speech (VGS) models [16], which better approximate
children’s reliance on spoken (rather than written) language by
operating on images and spoken words. Moreover, [16] reliably
reproduces monolingual children’s ME bias.

Training: Learning familiar classes

Testing: The mutual exclusivity test

cat paraplu klok

trumpet

novel image novel audio familiar image

? ?

Figure 1: Looking for ME in bilingual VGS models. We first
train a model on images and spoken words from two languages
(e.g., English and Dutch). We then test for ME by pairing a novel
word with a novel image and a familiar image. If the model gives
a higher score to the novel–novel pair, then it has an ME bias.

Taking Nortje et al. [16] as a starting point, we compare the
ME bias in monolingual and bilingual VGS models. We first
improve the model, leading to better and more consistent results
in the monolingual case. We then train various combinations of
monolingual and bilingual VGS models using English, French
and Dutch speech–image data, as illustrated in Fig. 1. We find
that in most cases the bilingual models exhibit a smaller ME
bias, but the results are not consistent (as in the human studies).

We then present analyses to try and understand the organ-
isation of the resulting VGS embedding spaces in mono- and
bilingual models. In both cases, we find a modality gap in the
joint audio–image space. Qualitatively, we also show for the first
time that novel concepts are placed in-between familiar concepts
in the embedding space. The main difference between monolin-
gual and bilingual models is that the familiar images are packed
tighter in the bilingual case. Our analyses lay the foundation for
future work at larger scales on more language pairs.

2. Data and method
To investigate the ME bias computationally, we use a VGS model
that takes audio and images as input. We train the model to
associate spoken utterances of object names to their visual corre-
spondences (Fig. 1-top). The concepts seen during training are
then familiar to the learner. To test the model’s ME bias after
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learning, we prompt it with a spoken query from an unseen novel
class and ask it to select one of the two images, one showing
a familiar and the other a novel object (Fig. 1-bottom). If the
model tends to associate the novel spoken word with the novel
object, it has an ME bias.

The setup is identical in the mono- and bilingual cases, ex-
cept that in the bilingual setting, the training and test words come
from two languages. For the bilingual English–Dutch example in
Fig. 1, the novel trumpet (bottom) is not seen in either language
during training, but the familiar umbrella / paraplu is seen in
both English and Dutch during training.

Below we first describe how we construct the bilingual
speech–image datasets used for training the VGS models. We
then describe how the model is structured, trained, and evaluated.

2.1. Multilingual datasets

We need a dataset containing images paired with spoken words
in multiple languages. We therefore extend the English speech–
image data from [16] with Dutch and French speech.

The English data from [16] contains 13 familiar word classes
and 20 novel word classes. These are concrete nouns like the
ones in Fig. 1: cat, umbrella, clock. Speech segments for these
words are sourced from the Flickr Audio Captions Corpus [17],
Buckeye [18], and LibriSpeech [19]. The corresponding im-
ages come from MS COCO [20], Caltech-101 [21], and Ima-
geNet [22]. For training, full images are used, while the test im-
ages contain the objects isolated using a white background mask
based on the object segmentations provided with the datasets.
Training therefore happens in a cluttered natural environment,
while testing is done through unambiguous evaluations; this is
similar to children learning a language in a naturalistic setting
and then being tested in a laboratory.

We obtain Dutch and French spoken words for the 33 classes
present in the English data. Dutch words are extracted from the
Corpus Gesproken Nederlands [23] and the Dutch subsets of
multilingual LibriSpeech [24] and Common Voice [25]. For
French, we use the subsets from multilingual LibriSpeech and
Common Voice. We isolate the target spoken words using forced
alignment [26, 27]. Since for one novel word, nautilus, we have
few samples in Dutch and French, we discard it, leaving us
with 19 novel words. The class distribution follows the source
data, with roughly 67k images and 4k audio samples for the most
common concept (dog) and 47 images and 107 audio samples for
the least common concept (scissors) across the three languages.

2.2. Visually grounded speech (VGS) model architecture

Our VGS model simulates word learning in a cognitively moti-
vated manner, similar to a child learning to map object names to
their visual referents. Given an audio a and image i, the model
produces a score ϕ(a, i) of how well the two match.

As illustrated in Fig. 2, the architecture of the VGS model
is a two-tower encoder network coupled with a contrastive loss.
We use WavLM [28] to extract features from the audio a, and
DINO [29] to extract features from the image i. Both have been
pretrained on other unlabelled datasets using self-supervised
learning, and are kept frozen throughout VGS model training.
This can be seen as a proxy for how children during word learn-
ing can use visual and auditory perceptual abilities previously
acquired from exposure in the respective modalities [30,31]. The
feature extractors return sequences of representations; to obtain
a single embedding vector for each modality, we use a pooling
layer. The resulting embeddings are then L2 normalised. A dot
product gives the similarity score ϕ(a, i) between the two inputs.

audio a

WavLM Pool L2

· ϕ(a, i)

score

image i

DINO Pool L2

Figure 2: The architecture of our VGS model. The only parame-
ters that are updated are the transformer pooling layers.

The pooling layer consists of a single transformer block
with a learnable CLS token as the query vector. This layer also
incorporates two down-projection layers: at the input, from the
feature dimension D to the transformer width W , and at the
output, from the transformer width W to the embedding dimen-
sion E. Based on validation experiments, we use transformer
blocks with W = E = 256, four heads (W/64), and an inner
MLP dimension of 1024 (W × 4). The two transformer blocks
(one for audio and one for image) are the only learnable layers
in the model, amounting to approximately 2.5M parameters.

Compared to the VGS model from [16], our architecture
is both more modern (updates the AlexNet image encoder to
ResNet and the CPC audio encoder to WavLM) and simpler
(pools both modalities in the same way instead of pooling only
the audio modality and then max-pooling the scores). These
changes substantially improve the model’s ability to discriminate
between familiar classes (as we show below in Sec. 3), allowing
us to look for the ME bias in strong learners. Finally, since we
rely on frozen encoders, training is also more efficient.

2.3. Model training

At each training step, the model receives an audio–image pair
(a+, i+) corresponding to the same word class and a set of
negative audio samples

{
a−} and image samples

{
i−

}
from

other classes. Both the positive and negative samples come from
familiar classes. The negatives are sampled independently for
the two modalities, so they are not necessarily matched. We
define the probability that the model matches the spoken word
a+ to the correct image i+ as follows:

p(i+|a+) =
exp

{
ϕ(a+, i+)/τ

}∑
i exp {ϕ(a+, i)/τ} , (1)

where i in the denominator ranges across the positive i+ and
negative i− samples, and τ is a learnable temperature parame-
ter [32]. We define the reverse conditional probability p(a+|i+)
analogously and optimise the parameters (the pooling layer and
the temperature τ ) to maximise the log of these two probabilities
averaged across the samples in a batch.

The model is trained for 24 epochs using a learning rate
with a linear warm-up for the first four epochs up to a learning
rate of 2× 10−4, followed by cosine annealing to 10−6. In an
epoch we go through all audio samples in the dataset, and for
each audio sample we randomly pick a positive image and 11
negative images. We monitor the performance on a validation
split and select the model with the lowest loss on this split. For
the encoders, we use the base-plus WavLM variant [28]
(pretrained on English data; D = 768) and the ResNet-50 DINO
variant [29] (D = 2048). The temperature τ is capped at 100.
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We train monolingual (English, Dutch, and French) and
bilingual (English–Dutch, English–French, and Dutch–French)
VGS models on the 13 familiar classes from our speech–image
datasets. Since the number of epochs is fixed and in each epoch
we go through all the audio samples, the bilingual models will
go through more updates than the monolingual models. Results
were similar when an equal number of training steps was used.

2.4. Model evaluation

To test a model, we present it with an audio query and two
images: a positive one, which matches the class of the audio
query, and a negative one, belonging to a different class from the
audio query. Using this protocol, we consider two types of tests.

Familiar test. First, we measure discrimination ability across
familiar classes to ensure the models are properly trained. In this
test, the audio query belongs to a familiar class, and both images
are also from familiar classes (one matching and one not).

ME test. Second, we quantify the ME bias. In this test, the
audio query and the positive image come from a novel class, and
the negative image from a familiar class (as in Fig. 1-bottom).

In both tests, we sample 50 episodes for each class from
the test set, with no overlap between train, validation, and test
samples. To prevent dataset biases, the two images in each pair
are drawn from the same source dataset (Sec. 2.1). Each experi-
ment is repeated five times with a different seed affecting weight
initialisation and data sampling. For the monolingual models,
the test audio query matches the training language. For bilingual
models, the audio query can come from either training language.

3. Results and analyses
We want to see whether both monolingual and bilingual models
show an ME bias; whether the strength of the bias differs be-
tween the two; and what the similarities and differences are in
how the embedding spaces are organised.

3.1. Experimental results

The results in Table 1 are ordered according to the language
of the test query. Familiar performance is close to perfect in
all settings, for all languages, and even in the bilingual case.
The models have therefore properly learned the familiar words
and can robustly recognise the corresponding objects despite
the masked-out background at test time. This validates our
computational setup and is crucial for a meaningful ME test.
Note that overall, our results on the familiar test substantially
improve on those reported in prior work [16], likely due to the
use of self-supervised features in our model (see Sec. 2.2).

Having established that the models are well-trained, we now
consider the ME test. All the monolingual models yield an
accuracy of 67–68%, so they all show an ME bias (50% would
indicate no bias). These results show for the first time consistent
ME biases for monolingual VGS models trained on languages
other than English. Our scores on English are higher than the
ME results of roughly 60% in [16], suggesting that stronger
learners (like the model in this study) show a stronger ME bias.

We now turn to our main question: a comparison of the
ME results between monolingual and bilingual models. When
tested on English, we see that the ME score of 66.2% for an
English-only model drops to 65.7% when French is added, or to
63.5% when Dutch is added (Table 1 top). ME scores similarly
drop when English is added on the French test (middle), and
when English or French is added on the Dutch test (bottom).
This trend matches the findings from experiments on children,

Table 1: Performance on the familiar and ME tests for monolin-
gual and bilingual VGS models. We report mean accuracy (%)
and standard error computed across five training seeds.

Training languages Test language Familiar ME

Monolingual: EN 99.4±0.1 66.2±1.1
Bilingual: EN, FR English (EN) 99.6±0.1 65.7±1.3
Bilingual: EN, NL 99.6±0.1 63.5±1.5

Monolingual: FR 98.5±0.4 67.6±1.4
Bilingual: FR, EN French (FR) 98.9±0.1 66.8±1.4
Bilingual: FR, NL 99.0±0.1 69.4±0.9

Monolingual: NL 98.5±0.3 67.3±1.3
Bilingual: NL, EN Dutch (NL) 98.7±0.3 63.5±2.1
Bilingual: NL, FR 98.6±0.3 65.7±1.2

indicating that bilingual children make less use of the ME bias
than monolingual children [5–7]. But our result does not hold
in every single case: the Dutch–French model tested on French
gives an ME score of 69.4%, which is higher than the 67.6%
from the French-only model.

The results in Table 1 are for models with roughly 2.5M
parameters, but we also repeated the experiments with smaller
(W = 128, 0.8M parameters) and larger models (W = 512,
8.2M parameters). We observe similar trends: in most but not
all cases the bilingual models exhibit a smaller ME bias com-
pared to the monolingual ones. We carried out several statistical
comparisons between bilingual and their corresponding mono-
lingual models. Out of 18 tests (3 languages × 2 language pairs
× 3 model sizes), 9 show that the bias is significantly stronger
in the bilingual models, and 6 show a difference in the expected
direction but not significantly so. Human studies have similar
discrepancies: it isn’t always the case that bilingual children
show less ME, with age [8, 9], vocabulary [10], and the type of
test [9, 12] all seeming to play a role.

We have shown that visually grounded bilingual models tend
to have a lower ME bias than monolingual ones. But why does
this happen? Below we first look at why the ME bias is seen in
general, before considering the mono- vs bilingual question.

3.2. Understanding the embedding space

In an analysis of English-only models, Nortje et al. [16] showed
quantitatively that novel audio samples are generally closer to
novel images (regardless of class) than they are to any familiar
class. This is why we see the ME bias. But how is the represen-
tation space organised qualitatively? The structure of the model
of [16] did not allow for a sensible visualisation of the embed-
ding spaces,1 but our changes (Sec. 2.2) enable visualisation. We
therefore contribute the following new analyses.

Fig. 3-left uses a PCA projection to visualise the 256-
dimensional embeddings for both the audio and image samples.
The linear PCA projection allows us to see the global structure of
the data. Since the embeddings are L2 normalised, they live on
the unit sphere. The audio and image embeddings are positioned
on different sides. This is known as the modality gap and has
been observed in other bimodal models trained with a contrastive
loss [33]. Despite the gap, the familiar audio and image classes
are well-aligned, e.g., the green points are at the top and the blue

1The model in [16] did not extract an image embedding, but rather
patch embeddings that were aggregated non-linearly into the final score.
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PCA projection of
audio and image embeddings

Audio (English)
Audio (Dutch)
Image

auto

bearbeer

bird

boat
boot

car

cat

clock

cow

dog

elephant

hond

horse

kat

klok

koe

olifant

paard paraplu

schaap

schaar

scissors

sheepumbrella

vogel

t-SNE projection of
audio embeddings

Figure 3: Projections of embeddings from the bilingual English–
Dutch model. Familiar classes are coloured; novel classes are
grey. Left: Audio and image embeddings live in different cones of
the unit sphere. Right: Bilingual audio embeddings are aligned
for the familiar classes, while novel classes live in-between.

points at the bottom for both modalities. This ought to be the
case for the strong familiar results in Table 1.

The PCA picture shows global structure but is not complete:
from quantitative measurement, we know that on average novel
audio (grey circles and squares) are closer to novel images (grey
crosses) than they are to familiar images (coloured crosses), but
this is not captured in Fig. 3-left. We therefore analyse indi-
vidual modalities using a non-linear visualisation. Fig. 3-right
uses t-SNE to visualise the audio embeddings. The model sep-
arates out familiar classes throughout the representation space
and places novel classes in an in-between region. We verify this
interpretation quantitatively by computing the variance of famil-
iar and novel samples, both when all the samples are combined
or when considering samples per class.2 Fig. 4 shows results for
an English model and two bilingual models. We see that, indeed,
the overall variance of the novel data is much smaller than that
of the familiar data. At the same time, the per-class variance,
shown in the second plot in Fig. 4, is somewhat smaller for the
familiar than for the novel data. Taken together, these variance
values support the hypothesis stated in [16] that during training
the model spreads familiar classes around the space, with each
class in a tight bundle of its own, while novel classes are placed
between familiar ones, in a region where novel samples from
different classes overlap. Fig. 4 shows that this is the case for
both mono- and bilingual models.

3.3. Monolingual vs bilingual models

The analyses above give new insight into why we observe the
ME bias in both mono- and bilingual models. But why is the bias
slightly weaker in bilingual models? Given that ME is the result
of comparisons between two modalities in a high-dimensional
space (with a modality gap), it is inherently difficult to explain
the small differences in results. But we can use the variance
analysis of Fig. 4 to get some insights. A consistent change
when adding either French or Dutch to the English model is that
the spread across samples in the visual modality becomes tighter,
in particular for familiar samples (compare the blue image bars
in the first plot vs the third and fourth plots). While the variance
of all the novel images is also slightly smaller (brown bars),
we speculate that the familiar space shrinks more (relatively

2The variance is the trace of the covariance matrix, or, equivalently,
the mean of the distances between samples and their centroid.

Audio Image
0.0

0.1

0.2

Va
ria

nc
e

Model: EN
All samples

Audio Image

Model: EN
Within class

Familiar
Novel

Audio Image

Model: EN, FR
All samples

Audio Image

Model: EN, NL
All samples

Figure 4: Variance of familiar and novel samples for three mod-
els computed across all samples or samples within each class.
Familiar samples occupy a larger space than novel ones (first
plot), but they are tighter within class than novel samples (sec-
ond plot). In the bilingual models (third and fourth plots), the
image space gets tighter than in the monolingual case. Error
bars are 95% confidence intervals computed by bootstrapping.

speaking), resulting in more novel items being confused with
familiar ones (i.e., a lower ME bias) in the bilingual case.

This is not a comprehensive analysis: the ME bias exists be-
cause of comparisons across modalities, and not within a modal-
ity (which is what we do in the analysis here). Differences are
also small, which complicates analyses. Repeating our analysis
at a larger scale will therefore be necessary in future work.

3.4. Can a bilingual model implicitly translate?

An interesting secondary research question is how the bilingual
models structure their acoustic spaces given supervision through
the visual modality. In Fig. 3-right, we see that the audio em-
beddings of the familiar words in the two languages overlap.
This happens regardless of whether the two words sound similar
(clock–klok) or not (horse–paard). We quantify this translation
performance by measuring the accuracy of a simple nearest mean
centroid classifier: for each audio sample in one language, we
find its closest audio centroid in the other language. With this
approach, we achieve translation accuracies over 97% for all lan-
guage pairs. The accuracies for the novel words are, as expected,
poor: less than 30% in all cases. This is still better than random
(5.2% = 1/19 novel words), because some of the words are the
same in all three languages (e.g., bus, piano).

4. Conclusion
In this study we investigated whether the ME bias—a heuristic
employed by children in language learning—is also seen in visu-
ally grounded speech models trained on bilingual speech–image
data. We found that bilingual models consistently exhibit an ME
bias and that the strength of the bias tends to be weaker than for
monolingual models, with some exceptions. These findings are
consistent with those observed in children, where the ME bias
has been reported to be generally lower in bilingual children, but
this pattern is somewhat inconsistent [5–12]. While the results
of our computational study cannot explain why certain patterns
are observed in children, our model nonetheless can be used
to generate predictions that can then be tested in experiments
with children. Furthermore, in our computational model, we
can carefully control the training data and analyse the model’s
internal representations. We relied on these advantages in this
paper, but plan to use it even more in future work, increasing the
number of language pairs and the vocabulary size to gain even
more insights into the nature of the ME bias.
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