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Abstract
We consider the task of multimodal one-shot speech-image
matching. An agent is shown a picture along with a spoken
word describing the object in the picture, e.g. cookie, broccoli
and ice-cream. After observing one paired speech-image exam-
ple per class, it is shown a new set of unseen pictures, and asked
to pick the “ice-cream”. Previous work attempted to tackle this
problem using transfer learning: supervised models are trained
on labelled background data not containing any of the one-shot
classes. Here we compare transfer learning to unsupervised
models trained on unlabelled in-domain data. On a dataset of
paired isolated spoken and visual digits, we specifically compare
unsupervised autoencoder-like models to supervised classifier
and Siamese neural networks. In both unimodal and multimodal
few-shot matching experiments, we find that transfer learning
outperforms unsupervised training. We also present experiments
towards combining the two methodologies, but find that trans-
fer learning still performs best (despite idealised experiments
showing the benefits of unsupervised learning).
Index Terms: one-shot learning, multimodal modelling, unsu-
pervised models, transfer learning, word acquisition

1. Introduction
Young children are able to learn new objects and words from
only a few examples [1–4]. In contrast, most conventional vision
or speech processing systems require large amounts of labelled
data. This has motivated studies into one-shot learning [5–11]:
to learn a new concept from one or a few labelled examples.
One-shot learning studies have mainly focused on learning new
concepts in a single modality. But recently, multimodal one-shot
learning has also been considered [12]. Instead of observing
an item together with a class label, the model observes a pair
of items coming from different modalities but representing the
same concept. As an example, imagine a household robot is
shown examples of milk, eggs, butter and a mug, each visual
instance being paired with a spoken tag. At test time, the agent is
then presented with a spoken query such as “butter”, and asked
to identify the corresponding visual object.

In [12], this was investigated on a dataset of isolated spoken
digits paired with images. To perform multimodal matching at
test-time, separate speech-speech and image-image comparisons
were combined: a spoken query is compared to all the speech
items in a so-called support set, the image corresponding to the
closest item in the support set is determined, and this image is
then compared to all the items in the matching set to predict
the test image best matching the input speech query. To learn a
distance metric within each modality, transfer learning was used
by training supervised vision and speech models on background
training data not containing any of the one-shot test classes. As
in other unimodal one-shot studies in gesture recognition [13,
14], video [15] and robotics [16, 17], this can be motivated by

the observation that humans can call on prior knowledge when
learning new concepts.

Except for existing knowledge, it is also conceivable that,
before being shown paired examples, an agent such as the house-
hold robot would be exposed to a large amount of unlabelled
speech and visual data from its environment. Some of these
unlabelled examples could correspond to the classes of interest.
Motivated by this observation, we ask how unsupervised models
trained on unlabelled in-domain data compares to transfer learn-
ing from background data for multimodal one-shot matching.

To learn feature representations for within-modality com-
parisons, we specifically consider two unsupervised learning
strategies. An autoencoder (AE) attempts to reproduce its input
at its output through a bottleneck feature layer. The correspon-
dence autoencoder (CAE) tries to reproduce another instance of
the input at its output [18]. Since we only have unlabelled data,
the CAE samples nearest neighbours to obtain its output targets.
We compare these unsupervised models to supervised classifier
and Siamese neural networks trained on background data [12].
Each of the models are trained separately on vision and speech
data and then used to estimate within-modality similarity.

On the same isolated digit speech-image multimodal one-
shot matching task as in [12], we show that transfer learning out-
performs unsupervised modelling. We also consider approaches
for combining transfer and unsupervised learning. Although this
yields improvements over a purely unsupervised model, the best
overall performance is still achieved through transfer learning.1

2. Multimodal one-shot matching
We first describe unimodal one-shot matching and then extend it
to the multimodal case. As an example, we consider one-shot
speech classification, illustrated on the left in Figure 1(a). The
model is shown a support set S, containing one isolated spoken
word with a text label for each of the L word classes. From
this set, the model must learn a classifier CS that can make
predictions on an unseen test query x∗a. One approach is to
simply compare the query with each item in the support set and
then predict the label of the closest item, as illustrated on the
right in Figure 1(a).

Figure 1(b) illustrates multimodal one-shot speech-image
matching. Instead of labelled examples, the multimodal sup-
port set S = {(x(i)

a ,x
(i)
v )}Li=1 consists of pairs, where each

isolated spoken word x
(i)
a has a corresponding image x

(i)
v .

One pair is given for each of the L classes. At test time, the
model is presented with an unseen spoken query x∗a and asked
to determine the matching image in a test (or matching) set
Mv = {(x(i)

v )}Ni=1 of unseen images, as illustrated on the left
in Figure 1(b). Neither the query x∗a nor the matching set items

1We release source code at: https://github.com/
LeanneNortje/multimodal_speech-image_matching.
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Figure 1: (a) Unimodal one-shot speech classification and (b) multimodal one-shot speech-image matching. In both cases, the left side
illustrates the question shown at test time, and the right side illustrates how the model makes its prediction.

Mv occur exactly in the support set S. To perform this task,
we need to use S to construct a distance metric DS(xa,xv)
between audio queries and test images.

The approach we use (originally proposed in [12]) is to
reduce the task to two unimodal comparisons, as shown on the
right in Figure 1(b). First, we compare the query x∗a to each x

(i)
a

in S to find the query’s closest spoken neighbour in the support
set. This closest neighbour’s paired image is then compared to
each image x(i)

v in the matching setMv . This closest matching-
set image is then selected as the model’s prediction. In the figure,
this is the image of the rightmost eight.

We can also extend one-shot learning to K-shot learning. In
unimodal L-way K-shot classification, the support set S con-
tains L classes and K labelled examples per class. In multimodal
L-way K-shot matching, S = {(x(i)

a ,x
(i)
v )}L×Ki=1 consists of K

speech-image pairs for each of the L classes.

3. Feature representations
In the description above we implicitly assume that we have a
method or model that can measure similarity within a modality.
The aim of this paper is to consider different feature represen-
tations for these similarity comparisons, specifically comparing
transfer learning (used in [12]) to unsupervised feature learning.
To compare the different features, we use the same framework
as in [12] where multimodal one-shot learning is performed via
two unimodal comparisons (as outlined above, Figure 1(b)-right).
Note that this is not an end-to-end approach; future work will
explore learning direct cross-modal matching networks.

As a baseline, we use raw speech and image features di-
rectly (§3.1). We then consider different neural networks to
learn feature representations (§3.2 and §3.3). We use separate
networks for learning speech and image features. For both the
speech and vision models, we consider two settings: training
on unlabelled in-domain data (§3.2) and training on labelled
background data (§3.3).

3.1. Raw feature matching

As a nearest neighbour baseline, we use cosine distance over
image pixels for image-to-image comparisons, and dynamic time
warping (DTW) over MFCCs for speech-to-speech comparisons.

3.2. Unsupervised models on unlabelled in-domain data

We consider two unsupervised models trained on unlabelled in-
domain speech and vision data—data which includes unlabelled
instances of classes that we will see during one-shot testing.

An autoencoder (AE) is an unsupervised neural network

which aims to reconstruct its input through a lower dimensional
latent representation that acts as an information bottleneck [19].
As shown in Figure 2, the AE’s encoder fθ(x(i)) encodes the in-
put x(i) to the feature representation z(i). The decoder fφ(z(i))
decodes z(i) to produce the output ŷ(i). We use a squared loss
between the network’s output ŷ(i) and the desired output y(i),
i.e., ` = ||y(i) − ŷ(i)||22, with the target set to y(i) = x(i).

The correspondence autoencoder (CAE) is identical to the
AE but instead of reproducing the input x(i), it aims to reproduce
another instance x

(i)
pair of the same class as the input [18], i.e. we

set the target y(i) = x
(i)
pair in the loss `. The intuition is that the

CAE will produce features that are invariant to properties not
common to two inputs while capturing aspects that are, such
as the class. We consider two variants of the CAE: one trained
from scratch and another pretrained as an AE before switching
to the CAE loss (denoted as AE-CAE). To train the CAE, we
need pairs of items of the same class. Since our in-domain data
is unlabelled, we use cosine distance over pixels to find image
pairs that are most alike, and DTW to find spoken word pairs
predicted to be of the same type. Speaker information is used to
ensure that speech pairs are from different speakers.

Using unlabelled in-domain image data, we train unsuper-
vised vision networks with the AE, CAE and AE-CAE losses;
we use the architecture shown in Figure 2(a), with a convo-
lutional neural network (CNN) encoder producing the latent
feature vector, and a decoder with transposed convolutions. Sim-
ilarly, we use unlabelled in-domain speech data to train unsuper-
vised speech networks using the AE, CAE and AE-CAE losses;
we use an encoder recurrent neural network (RNN) producing
the latent feature vector which is then used to condition a de-
coder RNN, as shown in Figure 2(b). These speech RNNs are
similar to the acoustic embedding models of [20–23], since they
give a fixed-sized embedding for variable duration input.

3.3. Transfer learning from labelled background data

We next consider training supervised models on labelled back-
ground data. These datasets do not contain any instances of the
target one-shot classes. The idea is that features learned by such
models would still be useful for determining similarity on unseen
classes [10]. This is a form of transfer learning [24, 25].

We specifically consider supervised classifier and Siamese
neural networks, as in [12]. We use identical architectures to the
encoder parts of the networks in Figure 2. For the classifiers, we
add a softmax layer after the feature embedding layer z(i) and
train the networks with the multiclass log loss.

A Siamese network does not classify an input, but mea-
sures similarity between inputs [26]. The network consists of

2713



𝐱
(𝑖)
𝑣 𝐳

(𝑖)
𝑣 �̂� (𝑖)𝑣

( )𝑓𝜃 𝐱
(𝑖)
𝑣 ( )𝑓𝜙 𝐳

(𝑖)
𝑣

�̂� (𝑖)𝑎

( )𝑓𝜃 𝐱
(𝑖)
𝑎 ( )𝑓𝜙 𝐳

(𝑖)
𝑎

𝐳
(𝑖)
𝑎

Pre-processing of
spoken word (audio)

into MFCC

(a)

(b)

=  “nine”𝐱
(𝑖)
𝑎

Figure 2: (a) Convolutional neural networks (CNNs) are used to learn feature representations for image data and (b) recurrent neural
networks (RNNs) are used to learn feature representations for speech data.

identical sub networks with shared parameters; each network
maps its input to an embedding. Ideally, inputs of the same
class should have similar embeddings and inputs of different
classes should have different embeddings. Say we have in-
puts x, xpair and xneg, where x and xpair are from the same
class and x and xneg are from different classes. We want
the distance between the embeddings of x and xpair to be
smaller than those of x and xneg. We use the triplet hinge loss
l(x,xpair,xneg) = max{0,m+d(x,xpair)−d(x,xneg)}, where
d(x1,x2) =

∥∥z1 − z2
∥∥2

2
is the squared Euclidean distance be-

tween the embeddings z1 and z2 of x1 and x2, respectively, and
m is a margin parameter [27, 28]. To sample negative items,
we use the online semi-hard mining scheme, where for each
positive pair (x,xpair), the most difficult negative pair (x,xneg)
is sampled (meeting some constraints) [29–31].

Again, separate classifier and Siamese vision CNNs and
speech RNNs are trained on labelled background data. We
also consider supervised variants of the CAE and AE-CAE ap-
proaches, where instead of finding input-output training pairs
based on their nearest neighbours (§3.2), we train on ground
truth pairs from the background data (these were not considered
in [12]). For all of the models, we use the embedding z(i) as
representation for unseen input x(i).

4. Experimental setup
4.1. Data

We follow the same setup as [12], using a dataset of paired iso-
lated spoken digits and handwritten digit images [32]. Speech
data are parametrised as Mel-frequency cepstral coefficients
(MFCCs). Image pixels are normalised to [0, 1]. We use the
TIDigits corpus as our in-domain speech data; the corpus con-
sists of spoken digit sequences from 326 speakers [33]. We
split these sequences into isolated digits using forced alignments.
As our in-domain image data, we use the MNIST corpus which
contains 28 × 28 grayscale handwritten digit images [34]. Al-
though the TIDigits and MNIST datasets are labelled, note that
we use it as unlabelled in-domain data for the models in §3.2;
we specifically train these unsupervised models on unlabelled
isolated examples from the training subsets of these datasets.
All one-shot evaluation experiments are then performed on the
MNIST and TIDigits test subsets.

For background speech data, we use the Buckeye corpus of
English speech from 40 speakers [35]. We use forced alignments
to extract a set of labelled isolated words from this set. For

background image data, we use Omniglot [36], containing 1623
types of handwritten characters which we invert and downsample
to 28× 28. We ensure that there are no instances of the target
digit classes in either the Buckeye or Omniglot background data.

4.2. Models

Neural networks are implemented in TensorFlow and trained us-
ing Adam optimisation [37] with a learning rate of 10−3. Model
hyperparameters were tuned using unimodal one-shot classifica-
tion on test subsets of the background data, while early stopping
was performed on validation subsets—neither of these back-
ground sets have item or class overlap with the final evaluation
data. We use a feature embedding dimensionality of 130 in all
models to make results comparable. All speech RNNs take static
MFCCs as input, but first and second order derivatives are used
in the DTW baseline where it is beneficial.

Unsupervised speech RNNs are trained on unlabelled iso-
lated digits from the TIDigits training set using the AE, CAE
and AE-CAE losses (§3.2). In all cases, the encoder and decoder
each consists of three 400-unit RNN layers. Unsupervised vision
CNNs are trained with the AE, CAE and AE-CAE losses on
unlabelled images from the MNIST training set. The encoder
consists of three convolutional layers with 3×3 kernels and 32,
64 and 128 units; the decoder has the inverse architecture.

For transfer learning (§3.3), we train supervised classifier
and Siamese speech RNNs on labelled isolated words from the
Buckeye training set. Similarly, we train supervised classifier
and Siamese vision CNNs on Omniglot. All these supervised
models share the same structure as the encoder components
from their unsupervised counterparts. We also train supervised
variants of the CAE and AE-CAE speech and vision models on
the labelled background data.

4.3. Evaluation

We evaluate models averaged over 400 “episodes” [10]. To
construct the support set, each multimodal episode randomly
samples a spoken digit and paired image for each of the L = 11
classes (“one” to “nine”, as well as “zero” and “oh”). A matching
set is then sampled for testing, containing ten digit images not
in the support set. Finally, a spoken query is sampled, also not
in the support set. The speech query then needs to be matched
to the correct image in the matching set. The matching set only
contains ten digit images since there are only ten unique hand-
written digit classes (both “zero” and “oh” are counted as correct
if the image is that of a 0). Within an episode, ten different
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Table 1: Unimodal one- and five-shot speech classification.

Model 11-way accuracy (%)
one-shot five-shot

Baseline DTW 65.90 89.45

Transfer learning
models

Classifier RNN 86.87 ± 0.83 95.40 ± 0.50
Siamese RNN 83.52 ± 2.56 94.34 ± 0.86
CAE RNN 79.89 ± 1.32 92.16 ± 0.90
AE-CAE RNN 80.02 ± 1.04 93.91 ± 0.25

Unsupervised
models

AE RNN 53.82 ± 1.70 75.58 ± 1.54
CAE RNN 75.80 ± 1.76 95.14 ± 0.80
AE-CAE RNN 77.01 ± 1.29 93.30 ± 0.56

query instances are also sampled while keeping the support and
matching sets fixed. We report unimodal and multimodal one-
and five-shot matching accuracies with 95% confidence intervals
averaged over five models trained with different seeds.

5. Experimental Results
5.1. K-shot unimodal speech and image classification

We first consider unimodal results in isolation. Table 1 shows
one- and five-shot speech classification results. All models ex-
cept the AE RNN outperform the baseline. The classifier RNN
achieves the highest accuracies, followed by the Siamese RNN.
In all cases, transfer learning models outperform their unsuper-
vised counterparts, except for the five-shot CAE RNN.

For unimodal image classification (not shown here), the
trends are very similar, with the classifier and Siamese CNNs
achieving accuracies of around 64% and 84% for the one- and
five-shot cases, respectively. Again, these transfer learning mod-
els outperform all the unimodal unsupervised image models.

5.2. K-shot multimodal speech and image matching

Table 2 shows multimodal one- and five-shot results.2 In each
case, the same model type is used to obtain speech and image
features, e.g. the Classifier row uses a CNN vision classifier to
get image features with an RNN speech classifier for speech
features. In both one- and five-shot multimodal matching, the
classifier performs best followed closely by the Siamese model.
None of the unsupervised models perform as well as these mod-
els obtained using transfer learning. For the CAE and AE-CAE
losses, the models trained using labelled background data also
outperform the unsupervised variants.

5.3. Towards combined transfer and unsupervised learning

It is evident that the transfer learning approach originally fol-
lowed in [12] outperforms the unsupervised approach developed
here. However, the two methodologies might be complementary:
transfer learning from background data could capture general
properties within a particular modality, while unsupervised learn-
ing on unlabelled in-domain data could provide a way to tailor
representations to a specific test setting.

As an initial investigation, we propose two combined mod-
els here, with results given in Table 3. The CAE with cosine
pairs (row 3) is repeated from Table 2. Instead of finding near-

2Note that the results here are not directly comparable to that of [12].
We found a small bug in the validation setup of [12]; the scores across
models in [12] are comparable, but lower scores are achieved when using
the proper validation setup used in this paper. We reran the code of [12]
to confirm the scores reported here.

Table 2: Multimodal one- and five-shot speech-image matching.

Model 11-way accuracy (%)
one-shot five-shot

Baseline DTW + Pixels 31.80 41.88

Transfer learning
models

Classifier [12] 56.80 ± 1.19 59.67 ± 1.73
Siamese [12] 54.83 ± 1.80 59.25 ± 0.79
CAE 46.60 ± 0.69 53.82 ± 1.07
AE-CAE 48.15 ± 1.21 56.81 ± 1.21

Unsupervised
models

AE 28.99 ± 0.84 38.68 ± 1.51
CAE 42.75 ± 0.62 52.15 ± 0.69
AE-CAE 42.81 ± 1.01 50.28 ± 0.29

Table 3: Multimodal one- and five-shot speech-image matching
using models that combine transfer and unsupervised learning.

Model 11-way accuracy (%)
one-shot five-shot

Baseline: DTW + Pixels 31.80 41.88

Transfer learning: Classifier [12] 56.80 ± 1.19 59.67 ± 1.73

CAE with cosine pairs 42.75 ± 0.62 52.15 ± 0.69
CAE with classifier pairs 48.66 ± 1.14 55.59 ± 0.71
Transfer learning + CAE fine-tuning 54.32 ± 2.19 59.37 ± 1.80

CAE with oracle pairs 89.19 ± 0.69 92.81 ± 0.47

est neighbours using cosine distance, we use representations
from the classifier (trained on background data) to find pairs
in the unlabelled in-domain data for training a CAE (as with
the standard CAE, speaker information is still used to ensure
that pairs are from different speakers). We see that this CAE
with classifier pairs (row 4) gives a small improvement over the
standard CAE. By additionally initialising the CAE by training
it on the labelled background data and then fine-tuning it on the
in-domain data, we get a further improvement (Transfer learning
+ CAE fine-tuning, row 5). Neither of these approaches, however,
outperform the transfer learned classifier (row 2).

In order to see if it is at all possible to achieve better perfor-
mance with the CAE by using more accurate training pairs, we
also give the performance of a CAE trained only using correct
pairs in the last row of Table 3. We see that this oracle model
outperforms all other approaches, indicating that, if we were
able to improve the CAE’s training pairs, we might be able to
take advantage of an unsupervised learning scheme.

6. Conclusion
We have compared existing and new models for few-shot mul-
timodal speech-image matching. Transfer learning from back-
ground data consistently outperformed unsupervised modelling
on unlabelled in-domain data on a multimodal one-shot match-
ing benchmark. We also proposed two approaches for combining
transfer and unsupervised learning. Although neither improved
the best transfer learning approach, performance improved over
the standard unsupervised approach. We will therefore also con-
sider other approaches for combining the methodologies in future
work. Building on models which directly maps images and unla-
belled speech into a joint space [38–41], we will also consider
end-to-end solutions for multimodal one-shot learning.

This work is supported in part by the National Research Foundation
of South Africa (grant number: 120409), a Google Faculty Award for
HK, a DST CSIR scholarship for LN, and funding from Saigen.
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