
Visually grounded learning of keyword prediction from untranscribed speech

Herman Kamper, Shane Settle, Gregory Shakhnarovich, Karen Livescu

Toyota Technological Institute at Chicago
{kamperh, settle.shane, greg, klivescu}@ttic.edu

Abstract
During language acquisition, infants have the benefit of visual
cues to ground spoken language. Robots similarly have access
to audio and visual sensors. Recent work has shown that images
and spoken captions can be mapped into a meaningful common
space, allowing images to be retrieved using speech and vice
versa. In this setting of images paired with untranscribed spoken
captions, we consider whether computer vision systems can be
used to obtain textual labels for the speech. Concretely, we use
an image-to-words multi-label visual classifier to tag images
with soft textual labels, and then train a neural network to map
from the speech to these soft targets. We show that the result-
ing speech system is able to predict which words occur in an
utterance—acting as a spoken bag-of-words classifier—without
seeing any parallel speech and text. We find that the model often
confuses semantically related words, e.g. “man” and “person”,
making it even more effective as a semantic keyword spotter.
Index Terms: multimodal modelling, visual semantics, keyword
spotting, word discovery, language acquisition

1. Introduction
Current automatic speech recognition (ASR) systems use super-
vised models trained on huge amounts of annotated resources.
In an effort to alleviate this dependence on labelled data, there is
growing interest in methods that can learn from untranscribed
speech [1–5]. Here we consider the problem of grounding un-
labelled speech when paired with images. Annotating speech
is expensive and sometimes impossible, e.g. for endangered or
unwritten languages [6]; grounding speech using co-occurring
visual contexts could be a way to train systems in such low-
resource scenarios [7]. This setting is also relevant in robotics,
where audio and visual signals can be combined for learning new
commands [8–10], and for understanding language acquisition in
humans, who have access to visual cues for grounding [11–14].

Specifically, we are interested in the setting considered
in [15, 16], where natural images of scenes are paired with spo-
ken descriptions, and neither the images nor speech are labelled.
Both [15] and [16] used paired neural networks to map images
and speech into a common semantic space where matched im-
ages and spoken captions are close to each other. This approach
allows images to be retrieved using speech and vice versa. The
same task was also considered in earlier work on tagging mo-
bile phone images with spoken descriptions [17, 18]. Despite
the practical relevance, and interesting extensions in follow-on
work [7, 19], this joint mapping approach does not give an ex-
plicit grounding of speech in terms of textual labels.

Here we consider the possibility of using externally trained
computer vision systems, which do have access to textual la-
bels, to provide (noisy) supervision for untranscribed speech.
Concretely, we use an external image-to-words multi-label vi-
sual classifier, predicting for an image a set of words that refer
to aspects of the scene. Using soft labels (probabilities) from

this vision system, we train a convolutional neural network to
map spoken captions to these soft unordered word targets. The
result is a speech model that can predict which words (from a
fixed vocabulary defined by the vision system) occur in a spoken
utterance—acting as a spoken bag-of-words (BoW) classifier.

The previous work in this setting [7, 15, 16, 19] also makes
use of intermediate features from pretrained vision models. Our
approach can be seen as a further way to exploit vision systems,
by also using their textual classification output.

We first apply our word prediction model to two tasks: BoW
prediction, where the aim is to predict an unordered set of words
that occur in a given utterance, and keyword spotting, where
the task is to retrieve all utterances in a collection that contain
a given textual keyword. Promising results are achieved on
both tasks. Analysis shows that many of the model errors are
semantically related to the correct labels, e.g. the model retrieves
the speech utterance “a dog runs in the grass” for the textual
keyword “field”. These “errors” may be desirable in certain
settings. So in a final task, we evaluate our model as a semantic
keyword spotter, where it achieves performance much closer to
that of an oracle model trained using ground-truth transcriptions.

2. Related work
Our work intersects with several other research directions. Re-
cent studies have shown that using extra visual features from
the scene in which the speech occurs can improve conventional
ASR [20, 21]. These systems still rely on labelled speech data,
while our aim is to use vision to ground untranscribed speech.
There has also been much interest in developing speech models
that, instead of exact transcriptions, can learn from very noisy
labels [22–26]. The study of [26] particularly influenced our
approach, since they build a speech system using textual BoW
labels (§3.1). In the vision community, image captioning has
received much recent attention, where the goal is to produce a
fluent and informative natural language description for a visual
scene [27–30]. In natural language processing, images have also
been used to capture aspects of meaning (semantics) of written
language; see [31, 32] for reviews. Other studies have consid-
ered multimodal modelling of sounds (not speech) with text and
images [33–35], and phonemes with images [36].

3. Word prediction from images and speech
Given a corpus of parallel images and spoken captions, neither
with textual labels, we propose a method to train a spoken word
prediction model using labels obtained from the visual modality.

3.1. Model overview

Every training image I is paired with a spoken caption of frames
X = x1,x2, . . . ,xT (e.g. MFCCs). We use a vision system to
tag I with soft textual labels, giving targets to train the speech
network f(X) to predict which words are present in X . The
network f(X) therefore acts as a spoken bag-of-words (BoW)
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Figure 1: A multi-label visual classifier is used to produce targets
for training a word prediction model using only parallel images
and unlabelled spoken captions.

classifier (disregarding the order and quantity of words). No tran-
scriptions are used during training. When applying the trained
f(X), only speech input is used (and no image). The approach
is illustrated in Figure 1, and below we give complete details.

If we knew which words occur in training utterance X , we
could construct a multi-hot vector ybow ∈ {0, 1}W , with W the
vocabulary size, and each dimension ybow,w a binary indicator
for whether word w occurs in X . In [26], transcriptions were
used to obtain this type of ideal BoW supervision. Instead of a
transcription for X , we only have access to the paired image I .
We use a multi-label visual classifier (with parameters γ) which,
instead of binary indicators, produces soft targets yvis ∈ [0, 1]W ,
with yvis,w = P (w|I,γ) the probability of wordw being present
given image I . In Figure 1, yvis would ideally be close to 1 for
w corresponding to words such as “hat”, “man” and “shirt”, and
close to 0 for irrelevant dimensions. This vision system is fixed:
during training (below), vision parameters γ are never updated.

Given yvis as target, we train the word prediction model
f(X). This model (with parameters θ) consists of a convolu-
tional neural network (CNN) over the speech X , as shown on
the right in Figure 1. We interpret each dimension of the output
as fw(X) = P (w|X,θ). Note that f(X) is not a distribution
over the vocabulary, since any number of terms in the vocabulary
can be present in an utterance; rather, each dimension fw(X)
can have any value in [0, 1]. We train this speech network using
the cross-entropy loss, which (for a single training example) is:

L(f(X),yvis) = −
W∑

w=1

{yvis,w log fw(X) +

(1− yvis,w) log [1− fw(X)]} (1)

If we had yvis,w ∈ {0, 1}, as in ybow, this could be described as
the summed log loss of W binary classifiers. The size-W vocab-
ulary of our system is implicitly specified by the vision system.

3.2. Two convolutional architectures over speech

We consider two different convolutional architectures for f(X).
Both deal with the variable number of frames in X by pooling
over the entire output of their final convolution layer. As input
layer, both use a one-dimensional convolution only over time,
covering a number of frames and the entire frequency axis.

The first architecture is shown schematically in Figure 1. It
is a CNN based on [16, 37], consisting of several convolution
and max pooling layers (final pooling covering the entire output),
followed by fully connected layers. A sigmoid activation is used
for the final output f(X), and ReLUs in intermediate layers.
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Figure 2: A two-layer Palaz, Synnaeve and Collobert (PSC)
network [26]. The rest of our approach is as in Figure 1.

The second architecture is the one from Palaz, Synnaeve and
Collobert [26], referred to as PSC. It was originally developed
for ideal BoW supervision (§3.1), with the aim of not only doing
spoken BoW classification, but also locating where words occur
in the speech. PSC aims to do this by explicitly building the
vocabulary into its final convolutional layer, as illustrated in
Figure 2. The final convolution is linear with W output filters,
matching the system vocabulary. The outputs of these final filters
are h1,h2, . . . ,hT ′ , with hi ∈ RW . The idea is that hi,w gives
a score for word w occurring in the time span corresponding to
output i, thus giving an estimate of where w would occur in X .
To obtain the network output s(X) ∈ RW , PSC does not use
mean or max pooling, but rather an intermediate option:

sw(X) =
1

r
log

 1

T ′

T ′∑
t=1

exp (r ht,w(X))

 (2)

with sw(X) giving an overall unnormalized score for word w
being present in X . This logsumexp pooling is equivalent to
mean pooling when r → 0 and max pooling for r →∞; Palaz
et al. note that this intermediate method improves PSC’s location
prediction capability (refer to [26]). The final output of the
network is f(X) = σ(s(X)), with σ the sigmoid function. We
use r = 1, ReLU activations, and no intermediate pooling.

3.3. The vision system

In image captioning, the goal is to produce a natural language
description of a scene [27–30]. In contrast, rather than a fluent
sentence, here we want a vision tagging system [38–40] that
predicts an unordered set of words (nouns, adjectives, verbs) that
accurately describe aspects of the scene (Figure 1, left). This is
a multi-label binary classification task, where for each word we
must predict whether it is appropriate for the image.

We train our vision tagging system on the Flickr30k data
set [41], which contains 30k images, each with a set of 5 captions,
which we convert into a BoW after removing stop words. Given
a limited set of task-specific training data, such as Flickr30k, a
common approach is to start with a visual representation learned
as a part of end-to-end training on a larger data set (possibly
for a different task), and then adapt it to the task at hand. We
follow the established practice of using a representation trained
for the ImageNet classification task [42], as also in prior work [7,
16].1 Specifically, we use VGG-16 [43], but replace the final
classification layer with four 3072-unit ReLU layers, followed
by a binary classifier for word occurrence. We train this multi-
label visual classifier (with parameters γ) on Flickr30k, with the

1The ImageNet output itself is not well-suited to our setting, since it
performs a single multi-way classification among a set of image classes.

3678



output layer limited to the W = 1000 most common word types
in the image captions. The VGG-16 parameters are fixed during
training; only the final layers that we add on top are trained.

Note that we train the vision system here only on Flickr30k
images that do not correspond to train or test instances from the
parallel image-speech data used in our experiments (§4). This
leaves around 25k images.2 Also note that the vision system is
trained and then fixed (parameters γ is not updated in §4).

4. Experiments
4.1. Experimental setup

We train our word prediction model on the data set of parallel im-
ages and spoken captions of [44], containing 8000 images with 5
spoken captions each. The audio comprises around 37 hours of
active speech. The data comes with train, development and test
splits containing 30 000, 5000 and 5000 utterances, respectively.
Speech is parametrized as MFCCs with first and second order
derivatives, giving 39-dimensional input.3 Utterances longer
than 8 s are truncated (99.5% of utterances are shorter than 8 s).

Training images are passed through the vision system (§3.3),
producing soft targets yvis for training the word prediction model
f(X) on the unlabelled speech. We consider two architectures
for f(X), referred to as VisionSpeechCNN and VisionSpeech-
PSC, respectively (see §3.2). VisionSpeechCNN is structured as
follows: 1-D ReLU convolution with 64 filters over 9 frames;
max pooling over 3 units; 1-D ReLU convolution with 256 filters
over 10 units; max pooling over 3 units; 1-D ReLU convolution
with 1024 filters over 11 units; max pooling over all units; 4096-
unit fully-connected ReLU; and the 1000-unit sigmoid output.
VisionSpeechPSC is structured as follows: 1-D ReLU convolu-
tion with 96 filters over 9 frames; four 1-D ReLU convolutions,
each with 96 filters over 10 units; 1-D linear convolution with
W = 1000 filters over 10 units; and logsumexp pooling fol-
lowed by the final sigmoid activation. We arrived at these two
structures starting from those in [16] and [26], respectively, and
then tuned them on our development data.

We also obtain upper and lower bounds on performance. As
an upper bound, we train two oracle models, OracleSpeechCNN
and OracleSpeechPSC, with the same structures as the two Vi-
sionSpeech models above. These models are trained on ideal
BoW supervision (§3.1): we obtain ybow targets for the 1000
most common words in the transcriptions of the 30 000 speech
training utterances, after removing stop words. Next, as a lower-
bound baseline, we use a unigram language model prior that
gives the unigram probability of each keyword as estimated
from the transcriptions. This baseline gives an indication of how
much better our models do than simply hypothesizing common
words. Note that the textual transcriptions are used only for the
baseline and oracle models and for evaluation: neither of the
VisionSpeech models ever see any parallel speech and text.

All models were implemented in TensorFlow [45].4 Based
on development tuning, we use Adam optimization [46] with
a learning rate of 0.0001 for all models, except those based on
PSC, which uses 0.001.

4.2. Spoken bag-of-words prediction

We first consider the task of predicting which words are present
in a given test utterance. Given input X , our model gives a

2We do this since there are, unfortunately, some overlapping images.
3We also tried filterbanks; MFCCs always worked similarly or better.
4The code recipe is available at: https://github.com/kamperh/

recipe_vision_speech_flickr.

Table 1: Spoken bag-of-word prediction performance (%) at two
thresholds α, and the average precision (AP) over all α.

α = 0.4 α = 0.7

Model AP P R F P R F

Unigram baseline 6.8 12.1 14.2 13.1 17.6 5.9 8.8

VisionSpeechCNN 20.0 34.4 24.1 28.3 62.9 8.9 15.7

VisionSpeechPSC 18.9 40.1 20.2 26.9 62.9 6.7 12.0

OracleSpeechCNN 59.5 78.3 50.5 61.4 90.1 43.5 58.7

OracleSpeechPSC 69.7 77.1 63.0 69.3 87.4 54.1 66.8

Table 2: Example input utterances and BoW predictions of Vi-
sionSpeechCNN for α = 0.7. Orange shows correct predictions.

Transcription of input utterance Predicted BoW labels

a little girl is climbing a ladder child, girl, little, young
a rock climber standing in a crevasse climbing, man, rock
man on bicycle is doing tricks in an old
building

bicycle, bike, man, riding,
wearing

a dog running in the grass around sheep dog, field, grass, running
a man in a miami basketball uniform
looking to the right

ball, basketball, man,
player, uniform, wearing

a snowboarder jumping in the air with a
person riding a ski lift in the background

air, man, person, snow,
snowboarder

score fw(X) ∈ [0, 1] for every word w in its vocabulary, and
these can be used for spoken BoW prediction. To make a hard
prediction, we set a threshold α and output labels for allw where
fw(X) > α. We compare the predicted BoW labels to the true
set of words in the transcriptions, and calculate precision, recall
and F -score across all word types in the reference transcriptions
(not only the 1000 words in the system vocabulary). To compare
performance independently of α, we report average precision
(AP), the area under the precision-recall curve as α is varied.

Table 1 presents BoW prediction performance for the differ-
ent models at two operating points for α, to show the trade-off
between precision and recall. The unigram baseline achieves non-
trivial performance, indicating that some words are commonly
used across the utterances in the data set. Both VisionSpeech
models substantially outperform this baseline at both α’s, and in
AP. Although the VisionSpeech models still lag far behind the
two oracle models, the VisionSpeech models are trained without
seeing any parallel speech and text. The precision of 61.3% of
VisionSpeechCNN at α = 0.7 is therefore noteworthy, since it
shows that (although we miss many words in terms of recall), a
relatively high-precision textual labelling system can be obtained
using only images and unlabelled speech. For the oracle mod-
els, the PSC architecture is beneficial, outperforming its CNN
counterpart by all measures; but for the VisionSpeech models,
the PSC model falls slightly behind. We discuss this below.

Table 2 gives examples of the type of output produced by
the VisionSpeechCNN model. To better analyze the model’s be-
havior, we examine a selection of words that the model predicts
that do not occur in the corresponding reference transcriptions.
Figure 3 shows some of these “false alarm words”, along with
the most common words that do occur in the corresponding ut-
terances. In many cases, the predicted words are variants of the
correct words: e.g. for an incorrect prediction of “snow”, most
of the reference transcriptions contain the word “snowy”. Other
confusions are semantic in nature, e.g. “young” is predicted
when “girl” is present, and “trick” when “ramp” is present.
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Figure 3: False alarms (y-axes) predicted by VisionSpeechCNN,
and the words in the corresponding utterances (darker shading
indicating higher frequency), when used for BoW prediction.

Table 3: Keyword spotting performance (%).

Model P@10 P@N EER

Unigram baseline 5.0 3.5 50.0

VisionSpeechCNN 54.5 33.1 22.3

VisionSpeechPSC 48.5 31.9 22.9

OracleSpeechCNN 92.0 72.4 6.2

OracleSpeechPSC 96.5 83.0 4.1

4.3. Keyword spotting

Our model can also be naturally used as a keyword spotter: given
a text query, the goal is to retrieve all of the utterances in the
test set containing spoken instances of that query. We randomly
select 20 textual keywords from the VisionSpeech output vocab-
ulary as queries. For evaluation, we use three metrics [47, 48]:
P@10 is the average precision (across keywords, in %) of the
10 highest-scoring proposals; P@N is the average precision of
the top N proposals, with N the number of true occurrences of
the keyword; and equal error rate (EER) is the average error rate
at which the false acceptance and false rejection rates are equal.

Table 3 shows keyword spotting results. The trend in relative
performance is similar to that of Table 1: the unigram baseline
performs worst, the VisionSpeech models give reasonable scores,
and the oracle models perform best. The very high oracle perfor-
mance indicates that the constrained nature of the data used here
(narrow domain, relatively small vocabulary) makes the task
fairly easy when true transcriptions are available. Nevertheless,
it is again noteworthy that both VisionSpeech models obtain a
P@10 of around 50% at an EER of 23%, without using any text.

To give a qualitative view of VisionSpeechCNN’s errors,
Table 4 shows examples of incorrectly matched utterances for
some keywords. As before, many of these erroneous utterances
contain either variants of the keyword (e.g. “play” and “playing”)
or are semantically related (e.g. “young” and “little girl”). Al-
though these matches would seem reasonable and even desirable
in some settings, they are penalized under the metrics in Table 3.

4.4. Semantic keyword spotting

To investigate this issue quantitatively, we considered the top 10
proposed utterances for each keyword for each model, and rela-
belled as correct those utterances that either contained keyword
variants or were semantically related. This allows us to report
P@10 for the task of semantic keyword spotting, as shown in
Table 5 (the other metrics would require us to semantically label
all test utterances). Compared to Table 3, the semantic key-
word spotting performance is better than exact keyword spotting
scores for all models. However, the VisionSpeech models im-

Table 4: Examples of incorrectly retrieved utterances when Vi-
sionSpeechCNN is used for keyword spotting.

Keyword Example of incorrectly matched utterance Type

behind a surfer does a flip on a wave mistake
bike a dirt biker flies through the air variant
boys two children play soccer in the park semantic
large . . . a rocky cliff overlooking a body of water semantic
play children playing in a ball pit variant
sitting two people are seated at a table with drinks semantic
yellow a tan dog jumping over a red and blue toy mistake
young a little girl on a kid swing semantic

Table 5: Semantic keyword spotting performance (%)

Model P@10

Unigram baseline 10.0

VisionSpeechCNN 82.5

VisionSpeechPSC 71.5

OracleSpeechCNN 98.0

OracleSpeechPSC 99.5

prove most, with VisionSpeechCNN improving by almost 30%
absolute. Moreover, while the oracle models improved mainly
due to variant matches, the VisionSpeech models had about equal
numbers of relabelled variant and semantic matches.

In Tables 3 and 5 we again see that while PSC is superior to
CNN for the oracle models, this is not the case for the Vision-
Speech models. As mentioned in §3.2, PSC is intended to also
estimate word locations. Our results suggest that when trained
on transcriptions (oracle models), there is a benefit in attempting
to capture aspects of word order. However, when trained through
visual grounding, the output of VisionSpeechPSC produces high
probabilities for several semantically related words, and there is
far less structure in the order of these words.

5. Conclusion
We have introduced a new way of using images to learn from
untranscribed speech. By using a visual image-to-word classifier
to provide soft labels for the speech, we are able to learn a neural
speech-to-keyword prediction system. Our best model achieves a
spoken bag-of-words precision of more than 60%, and a keyword
spotting P@10 of more than 50% with an equal error rate of
23%. The model achieves this performance without access to any
parallel speech and text. Further analysis shows that the model’s
mistakes are often semantic in nature, e.g. confusing “boys”
and “children”. To quantify this, we evaluated our model as a
semantic keyword spotter, where the task is to find all utterances
in a corpus that are semantically related to the textual keyword
query. In this setting, our model achieves a semantic P@10 of
more than 80%. Future work will consider how semantic search
in speech can be formalized, and how the visual component of
our approach can be explicitly tailored to obtain an improved
visual grounding signal for unlabelled speech.

Acknowledgements: We thank Gabriel Synnaeve and David Harwath
for assistance with data and models, as well as Shubham Toshniwal
and Hao Tang for helpful feedback. This research was funded by NSF
grant IIS-1433485. The opinions expressed in this work are those of the
authors and do not necessarily reflect the views of the funding agency.

3680



6. References
[1] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in

speech,” IEEE Trans. Audio, Speech, Language Process., vol. 16,
no. 1, pp. 186–197, 2008.

[2] A. Jansen et al., “A summary of the 2012 JHU CLSP workshop on
zero resource speech technologies and models of early language
acquisition,” in Proc. ICASSP, 2013.

[3] C.-y. Lee, T. O’Donnell, and J. R. Glass, “Unsupervised lexicon
discovery from acoustic input,” Trans. ACL, vol. 3, pp. 389–403,
2015.

[4] M. Versteegh, X. Anguera, A. Jansen, and E. Dupoux, “The Zero
Resource Speech Challenge 2015: Proposed approaches and re-
sults,” in Proc. SLTU, 2016.

[5] H. Kamper, A. Jansen, and S. J. Goldwater, “Unsupervised word
segmentation and lexicon discovery using acoustic word embed-
dings,” IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 24, no. 4, pp. 669–679, 2016.

[6] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic
speech recognition for under-resourced languages: A survey,”
Speech Commun., vol. 56, pp. 85–100, 2014.

[7] G. Chrupała, L. Gelderloos, and A. Alishahi, “Representations of
language in a model of visually grounded speech signal,” arXiv
preprint arXiv:1702.01991, 2017.

[8] J. Luo et al., “Object category detection using audio-visual cues,”
in Proc. ICVS, 2008.

[9] M. Sun and H. Van hamme, “Joint training of non-negative Tucker
decomposition and discrete density hidden Markov models,” Com-
put. Speech Lang., vol. 27, no. 4, pp. 969–988, 2013.

[10] T. Taniguchi et al., “Symbol emergence in robotics: A survey,” Adv.
Robotics, vol. 30, no. 11-12, pp. 706–728, 2016.

[11] L. Smith and C. Yu, “Infants rapidly learn word-referent mappings
via cross-situational statistics,” Cognition, vol. 106, no. 3, pp. 1558–
1568, 2008.

[12] E. D. Thiessen, “Effects of visual information on adults and infants
auditory statistical learning,” Cognitive Sci., vol. 34, no. 6, pp.
1093–1106, 2010.

[13] O. J. Räsänen, “Computational modeling of phonetic and lexical
learning in early language acquisition: Existing models and future
directions,” Speech Commun., vol. 54, pp. 975–997, 2012.

[14] S. Frank, N. H. Feldman, and S. J. Goldwater, “Weak semantic
context helps phonetic learning in a model of infant language
acquisition,” in Proc. ACL, 2014.

[15] G. Synnaeve, M. Versteegh, and E. Dupoux, “Learning words from
images and speech,” in NIPS Workshop Learn. Semantics, 2014.

[16] D. Harwath, A. Torralba, and J. R. Glass, “Unsupervised learning
of spoken language with visual context,” in Proc. NIPS, 2016.

[17] T. J. Hazen, B. Sherry, and M. Adler, “Speech-based annotation
and retrieval of digital photographs,” in Proc. Interspeech, 2007.

[18] X. Anguera, J. Xu, and N. Oliver, “Multimodal photo annotation
and retrieval on a mobile phone,” in Proc. ICMIR, 2008.

[19] D. Harwath and J. R. Glass, “Learning word-like units from joint
audio-visual analysis,” arXiv preprint arXiv:1701.07481, 2017.

[20] F. Sun, D. Harwath, and J. R. Glass, “Look, listen, and decode:
Multimodal speech recognition with images,” in Proc. SLT, 2016.

[21] A. Gupta, Y. Miao, L. Neves, and F. Metze, “Visual features for
context-aware speech recognition,” in Proc. ICASSP, 2017.

[22] G. Aimetti, R. K. Moore, and L. ten Bosch, “Discovering an op-
timal set of minimally contrasting acoustic speech units: A point
of focus for whole-word pattern matching,” in Proc. Interspeech,
2010.

[23] V. Renkens and H. Van hamme, “Mutually exclusive grounding
for weakly supervised non-negative matrix factorisation,” in Proc.
Interspeech, 2015.

[24] L. Duong et al., “An attentional model for speech translation with-
out transcription,” in Proc. NAACL, 2016, pp. 949–959.

[25] S. Bansal, H. Kamper, A. Lopez, and S. J. Goldwater, “Towards
speech-to-text translation without speech recognition,” in Proc.
EACL, 2017.

[26] D. Palaz, G. Synnaeve, and R. Collobert, “Jointly learning to
locate and classify words using convolutional networks,” in Proc.
Interspeech, 2016.

[27] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proc. CVPR, 2015.

[28] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. CVPR, 2015.

[29] H. Fang et al., “From captions to visual concepts and back,” in
Proc. CVPR, 2015.

[30] J. Donahue et al., “Long-term recurrent convolutional networks
for visual recognition and description,” in Proc. CVPR, 2015.

[31] C. H. Silberer, “Learning visually grounded meaning representa-
tions,” Ph.D. dissertation, The University of Edinburgh, 2015.

[32] R. Bernardi et al., “Automatic description generation from images:
A survey of models, datasets, and evaluation measures,” J. Artif.
Intell. Res., vol. 55, pp. 409–442, 2016.

[33] A. Owens et al., “Ambient sound provides supervision for visual
learning,” in Proc. ECCV, 2016.

[34] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound
representations from unlabeled video,” in Proc. NIPS, 2016, pp.
892–900.

[35] A. K. Vijayakumar, R. Vedantam, and D. Parikh, “Sound-
Word2Vec: Learning word representations grounded in sounds,”
arXiv preprint arXiv:1703.01720, 2017.

[36] L. Gelderloos and G. Chrupała, “From phonemes to images: levels
of representation in a recurrent neural model of visually-grounded
language learning,” Proc. COLING, 2016.

[37] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional acous-
tic word embeddings using word-pair side information,” in Proc.
ICASSP, 2016.

[38] K. Barnard et al., “Matching words and pictures,” J. Mach. Learn.
Res., vol. 3, pp. 1107–1135, 2003.

[39] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Tagprop:
Discriminative metric learning in nearest neighbor models for
image auto-annotation,” in Proc. ICCV, 2009.

[40] M. Chen, A. X. Zheng, and K. Q. Weinberger, “Fast image tagging.”
in Proc. ICML, 2013.

[41] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for se-
mantic inference over event descriptions,” Trans. ACL, vol. 2, pp.
67–78, 2014.

[42] J. Deng et al., “Imagenet: A large-scale hierarchical image
database,” in Proc. CVPR, 2009.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[44] D. Harwath and J. Glass, “Deep multimodal semantic embeddings
for speech and images,” in Proc. ASRU, 2015.

[45] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015. [Online]. Available: http:
//tensorflow.org/

[46] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[47] T. J. Hazen, W. Shen, and C. White, “Query-by-example spoken
term detection using phonetic posteriorgram templates,” in Proc.
ASRU, 2009.

[48] Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spotting
via segmental DTW on Gaussian posteriorgrams,” in Proc. ASRU,
2009.

3681


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Herman Kamper
	Also by Shane Settle
	Also by Karen Livescu
	----------

