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Abstract—In this paper we extend the decision-tree state
clustering algorithm normally used to construct tied-state hidden
Markov models to allow for the explicit optimisation on a partic-
ular target accent. Although the traditional algorithm guarantees
overall likelihood improvements when clustering states from
multiple accents, per-accent improvements are not guaranteed.
We develop a tractable formulation of the targeted optimisation
strategy by basing the decision-tree cluster splitting criterion on a
likelihood calculated exclusively on the target accent. We find that
this approach leads to deterioration compared to the traditional
modelling approaches. However, when combining targeted and
non-targeted approaches by linear weighting, small but consistent
improvements over the traditional approaches are observed.

I. INTRODUCTION

Accented speech is often prevalent in multilingual societies.
The processing of such speech is therefore a necessary but
challenging task. In previous work [1] we considered dif-
ferent approaches for modelling the five accents of South
African English (SAE). In particular, we considered multi-
accent acoustic modelling which allows selective data sharing
between accents. This is achieved by including accent-based
questions in the decision-tree state clustering process normally
used to construct tied-state hidden Markov models (HMMs).

Although multi-accent acoustic modelling enables selective
sharing, the likelihood criterion used during the decision-tree
state clustering process is calculated on data from all accents.
The process therefore guarantees an overall likelihood im-
provement, but not per-accent improvements. In some practical
scenarios it might, however, be desirable to obtain the best
possible acoustic model set for a particular accent. This leads
to the question of whether the multi-accent decision-tree state
clustering approach can be extended to optimise the likelihood
on a particular target accent. Selective sharing would still be
allowed across accents, but data will only be shared if it is
advantageous for the target accent. In this paper we develop,
evaluate and analyse such techniques.

We base our investigation on databases for the five accents
of SAE identified in the literature [1], [2]. The acoustic mod-
elling approaches developed in [1] will serve as baselines in
the evaluation of the proposed targeted modelling approaches.

II. RELATED RESEARCH

Several studies have considered acoustic modelling of dif-
ferent accents of the same language. One approach is to simply
train separate accent-specific models that allow no sharing

between accents [3]. An alternative is to pool data from all
accents considered, resulting in a single accent-independent
acoustic model set [4]. Adaptation techniques in which models
trained on one accent are adapted using data from another
accent have also been considered [5], [6].

Recently, selective data sharing across accents through the
use of appropriate decision-tree state clustering algorithms
has received some attention [1], [7]. In these studies the
multilingual modelling approach first proposed by Schultz
and Waibel [8] was extended to apply to multiple accents of
the same language. In this paper we extend the multi-accent
acoustic modelling approach to allow targeted optimisation on
an individual accent from the set of accents considered.

III. GENERAL EXPERIMENTAL METHODOLOGY

A. Training and test sets

Our experiments were based on the African Speech Technol-
ogy (AST) databases [9]. These consist of annotated telephone
speech recorded over fixed and mobile telephone networks
and contain a mix of read and spontaneous speech. As part
of the AST Project, five English accented speech databases
were compiled corresponding to the five South African accents
of English identified in the literature [2]: Afrikaans English
(AE), Black South African English (BE), Cape Flats English
(CE), White South African English (EE) and Indian South
African English (IE). These databases were transcribed both
phonetically, using a common IPA-based phone set consisting
of 50 phones, as well as orthographically.

Each of the five databases was divided into training, de-
velopment and evaluation sets. As indicated in Tables I and
II, the training sets each contain between 5.5 and 7 hours of
speech from approximately 250 speakers while the evaluation
sets contain approximately 25 minutes from 20 speakers for
each accent. The development sets were used only for the
optimisation of the recognition parameters before final testing
on the evaluation data. For the development and evaluation sets
the ratio of male to female speakers is approximately equal
and all sets contain utterances from both land-line and mobile
phones. There is no speaker-overlap between any of the sets.
The average length of an utterance is approximately 2 seconds.

B. General acoustic modelling procedure

Speech recognition systems were developed using the HTK
tools [10]. Speech audio data was parametrised as 13 Mel-
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TABLE I
TRAINING SETS FOR EACH ACCENT.

Accent Speech (h) No. of
utterances

No. of
speakers

Phone
tokens

AE 7.02 11 344 276 199 336
BE 5.45 7779 193 140 331
CE 6.15 10 004 231 174 068
EE 5.95 9878 245 178 954
IE 7.21 15 073 295 218 372

Total 31.78 54 078 1240 911 061

TABLE II
EVALUATION SETS FOR EACH ACCENT.

Accent Speech
(min)

No. of
utterances

No. of
speakers

Phone
tokens

AE 24.16 689 21 10 708
BE 25.77 745 20 11 219
CE 23.83 709 20 11 180
EE 23.96 702 18 11 304
IE 25.41 865 20 12 684

Total 123.13 3710 99 57 095

frequency cepstral coefficients (MFCCs) with their first and
second order derivatives to obtain 39 dimensional observation
vectors. Cepstral mean normalisation was applied on a per-
utterance basis. The parametrised training sets were used
to obtain three-state left-to-right single-mixture monophone
HMMs with diagonal covariance matrices using embedded
Baum-Welch re-estimation. These monophone models were
then cloned and re-estimated to obtain initial cross-word tri-
phone models which were subsequently subjected to decision-
tree state clustering. This was followed by five iterations of re-
estimation. Finally, the number of Gaussian mixtures per state
was gradually increased, each increase being followed by a
further five iterations of re-estimation. This yielded diagonal-
covariance cross-word tied-state triphone HMMs with three
states per model and eight Gaussian mixtures per state.

As part of the research presented here, several different
acoustic model sets were developed following this general
training procedure. For each modelling approach a different
variant of the decision-tree state clustering algorithm was
applied. Since decision-tree state clustering is central to this
study, the standard algorithm is described briefly in Section IV.
Variants of the algorithm are subsequently described in Sec-
tions V and VI.

C. Language models

Comparison of recognition performance was based on
phone recognition experiments. Using the SRILM toolkit [11],
backoff bigram phone language models were trained for each
accent individually from the corresponding training set phone
transcriptions. Absolute discounting was used for the estima-
tion of language model probabilities [12]. The development
sets were used to optimise the word insertion penalty (WIP)
and language model scaling factor (LMS) used during recog-
nition. Because optimal WIP and LMS values showed almost

no variation between accents, the same WIP and LMS settings
were used for all experiments.

Since the presented work considers only the effect of the
acoustic models, it was assumed that during testing the accent
of each utterance was known. In order to isolate acoustic
modelling effects, evaluation therefore involved presenting
each test utterance only to a system employing an acoustic
and language model matching the accent of that utterance.

IV. DECISION-TREE STATE CLUSTERING

The standard decision-tree state clustering algorithm that is
used to construct tied-state triphone HMMs (Section III-B) is
reviewed in this section. The content is based on [13] and [14].

A. Overview

The clustering process begins by pooling into a single
cluster the data of corresponding states from all triphones with
the same basephone. This is done for all triphones observed
in the training set. A set of linguistically-motivated questions
is then used to split these clusters. Such questions may, for
example, ask whether the left context of a particular triphone
is a vowel or whether the right context is a silence. There are,
in general, many such questions and each potential question
results in a split which subsequently results in an increase in
training set likelihood. For each cluster the optimal question
(leading to the largest likelihood increase) is determined. In
this way clusters are subdivided repeatedly until either the
increase in likelihood or the number of observation vectors
associated with a resulting cluster (the cluster occupancy
count) falls below a certain predefined threshold.

The result is a phonetically-motivated binary decision-tree
where the leaf nodes represent clusters of triphone HMM states
which are to be tied by pooling data. This ensures that model
parameters are estimated on a sufficient amount of training
data. Furthermore, each state of a triphone not seen in the
training set can be associated with a leaf node in the decision-
trees. This allows the synthesis of triphones that are required
during recognition but are not present in the training set.

B. Details of decision-tree construction

Suppose question q splits the cluster with states S into two
clusters with states S1(q) and S2(q), respectively. The increase
in log likelihood resulting from the split can be calculated as

∆Lq = L(S1(q)) + L(S2(q))− L(S) (1)

where L(S) denotes the log likelihood of the training observa-
tion vectors assigned to the states in S. The question q∗ which
maximises (1) is selected as the optimal question to split the
cluster. In order to compute (1), however, the calculation of the
likelihood of an arbitrary cluster of states must be tractable.

Let S denote an arbitrary set of HMM states and let L(S) be
the log likelihood of the training observation vectors assigned
to the states in S under the assumption that all states in S share
a common mean µ(S) and covariance matrix Σ(S). We also
assume that the transition probabilities have a negligible effect
on the log likelihood and can therefore be ignored [14]. The
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log likelihood that the observation vectors were generated by
the states in S can then be calculated as

L(S) = log
∏

f∈F
p(of |S)

=
∑

f∈F
log [N (of |µ(S),Σ(S))] (2)

where of is the observation vector associated with frame f
and F is the set of training frames for which the observation
vectors are associated with the states in S, i.e. F = {f :
of is generated by states in S}. The observation probability
density functions (PDFs) are single-mixture Gaussian PDFs.

The direct calculation of L(S) using (2) requires direct
recourse to the observation vectors of . This is computationally
intractable since datasets are large and the likelihood calcula-
tion will have to be repeated several times. Fortunately it can
be shown (Appendix A) that [13]:

L(S) = −1

2
{log[(2π)n|Σ(S)|] + n}

∑

s∈S

∑

f∈F
γs(of ) (3)

where n is the dimensionality of the observation vectors and
γs(of ) is the posterior probability that the observation vector
of is generated by HMM state s. The log likelihood of a
cluster of states is therefore only dependent on the shared
covariance matrix Σ(S) and the total state occupancy of the
cluster

∑
s∈S
∑

f∈F γs(of ). It can be shown that the former
can be calculated from the means and covariance matrices of
the states in the cluster [13]. The state occupancy counts are
determined during the Baum-Welch re-estimation procedure
which precedes clustering. Thus, L(S) can be calculated
without recourse to the observation vectors and the decision-
tree construction process becomes computationally tractable.

V. TRADITIONAL MODELLING APPROACHES

The following gives an overview of acoustic modelling
approaches considered in previous work [1] and summarises
relevant results. These results are the baselines for Section VI.

A. Accent-specific and accent-independent acoustic modelling

As described in Section II, accent-specific acoustic models
are obtained by not allowing any sharing of data between
accents. By growing separate decision-trees for the different
accents, triphone HMM states are clustered separately. Only
questions relating to phonetic context are employed, resulting
in completely distinct sets of acoustic models for each accent.

In contrast, accent-independent models are obtained by
blindly pooling accent-specific data across accents for phones
with the same IPA symbol, resulting in a single accent-
independent model set. A single set of decision-trees is con-
structed across all accents and the clustering process employs
only questions relating to phonetic context, resulting in a single
accent-independent set of triphone HMMs for all accents.

These two approaches were applied to the training sets of
the five accents of SAE described in Section III-A. For each
accent, the decision-tree likelihood improvement threshold was
optimised separately on its corresponding development set.

This approach was followed for all experiments presented in
this paper since the purpose here is to achieve best perfor-
mance on a particular target accent and not to optimise average
performance over all accents, as was the case in [1].

The first two entries in Table III show the phone recog-
nition performance measured on the evaluation sets for the
accent-specific and accent-independent modelling approaches.
Accent-independent models perform better than the accent-
specific models for all accents except BE. The average ac-
curacy of the accent-independent models is also better by
approximately 0.76% absolute. This improvement has been
calculated to be statistically significant at the 99.9% level using
bootstrap confidence interval estimation at the utterance level
with 104 bootstrap replications over all five accents [15].

B. Multi-accent acoustic modelling

The third and final acoustic modelling approach considered
in [1] is similar to accent-independent modelling. Again, the
state clustering process begins by pooling corresponding states
from all triphones with the same basephone. However, in this
case the set of decision-tree questions take into account not
only the phonetic character of the left and right contexts but
also the accent of the basephone. The HMM states of two
triphones with the same IPA symbol but from different accents
can therefore be kept separate if there is a significant acoustic
difference or can be tied if there is not. We refer to such
models as multi-accent acoustic models. Figure 1 shows an
example in which the centre state of the triphone [t]-[iy]+[ng]
is tied across the AE and EE accents while the first and last
states are modelled separately.

The third entry in Table III indicates the performance when
using multi-accent acoustic models. For AE and IE, improved
performance over the first two acoustic model sets is observed.
For CE and EE, deterioration is seen relative to the accent-
independent models. For BE, deterioration is seen relative
to the accent-specific models. Nevertheless, the multi-accent
models show a very small improvement in average accuracy
over the accent-independent models. This improvement is
statistically significant only at the 60% level.

To obtain some indication of what happens in the decision-
tree clustering process, the type of questions most frequently
asked during clustering can be considered. Figure 2 analyses
the decision-trees of the multi-accent acoustic models giving
optimal performance on the AE development set. The figure

TABLE III
PER-ACCENT AND AVERAGE (AVG.) PHONE RECOGNITION

ACCURACIES (%) MEASURED ON THE EVALUATION SET. THE DIFFERENT
ACOUSTIC MODEL SETS ARE DESCRIBED THROUGHOUT THE PAPER.

Acoustic model set AE BE CE EE IE Avg.

Accent-specific 64.80 56.77 64.59 72.97 64.27 64.68
Accent-independent 65.97 55.98 66.51 74.45 64.40 65.44
Multi-accent 66.20 56.56 66.31 73.94 64.60 65.50
Targeted multi-accent 64.60 55.17 64.11 72.65 64.44 64.21
Weighted targeted 66.74 56.56 66.13 73.94 64.96 65.65
Weight wt used above 0.51 0.5 0.53 0.5 0.54
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AE HMM for triphone [t]−[iy]+[ng]

a12 a23

a11 a22 a33

a12 a23

a11 a22 a33

s3

s3s2s1

s2s1

EE HMM for triphone [t]−[iy]+[ng]

Fig. 1. Multi-accent HMMs for corresponding AE and EE triphones.

shows that about 50% of all questions at the root nodes are
accent-based and that this proportion drops to 34% and 30%
for the roots’ children and grandchildren respectively. Of the
12 970 resulting clusters (the leaf nodes) in the decision-trees,
13.2% are AE-only, 22.2% share AE with some other accent(s)
and 64.7% are non-AE. These statistics and the analysis in
Figure 2 are used for comparison in the next sections.

VI. TARGETED MODELLING APPROACHES

This section describes new extensions which we have made
to the multi-accent acoustic modelling approach (Section V-B).
We treat the results presented in Section V as baselines.

A. Motivation and overview

When clustering triphone states from several accents, the
log likelihood L(S) used as splitting criterion in the decision-
tree clustering process is calculated over all accents. Although
a particular cluster split guarantees an overall improvement
in likelihood, improvements on a per-accent basis are not
guaranteed. This raises the question whether the algorithm
can be altered to optimise the likelihood on a particular target
accent. In such an approach, a specific phonetic or accent-
based question would be applied only when it is advantageous
for the models of the selected target accent to do so.

B. Targeted multi-accent acoustic modelling

Suppose we have a cluster of states S = Sx ∪ St with the
states Sx generating observation vectors for frames Fx and St
generating observation vectors for frames Ft. Our aim is to
optimise performance on the target states St. In the traditional
decision-tree state clustering procedure, the log likelihood of
this cluster S generating the observation vectors for frames
F = Fx ∪ Ft would be calculated according to (3) and the
optimisation criterion would be based upon this figure. We
propose to determine instead the log likelihood of the target
states St generating the observation vectors for frames Ft.
While all states in S still share a common mean µ(S) and
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Fig. 2. The percentage of questions that relate to specific accents at various
depths within the decision-trees for the multi-accent acoustic model set with
optimal recognition performance on the AE development set.

covariance matrix Σ(S), we base the cluster splitting criterion
on this alternative log likelihood. By doing so, parameter
estimation is still based on data from all frames F = Fx ∪ Ft

but the likelihood optimised is restricted to a set of target states
St and no longer based on all the states S.

The log likelihood of states St generating the associated
observation vectors for frames Ft can be calculated as

Lt(S) = log
∏

f∈Ft

p(of |S)

=
∑

f∈Ft

log [N (of |µ(S),Σ(S))] (4)

This log likelihood is still dependent on all the states S since
µ(S) and Σ(S) are based on data from all the states.

As was the case in (2), the direct calculation of (4) is
computationally intractable since it requires recourse to the ob-
servation vectors. However, we can again show (Appendix B)
that this amended log likelihood can be calculated from the
means, covariance matrices and state occupancy counts of the
states in S:

Lt(S) = −1

2
Nt {log[(2π)n|Σ(S)|]} − 1

2
n(Nx +Nt)

+
1

2
tr{Σ−1(S)Nx[Σ(Sx)

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]} (5)

with

Nt =
∑

s∈St

∑

f∈F
γs(of ) and Nx =

∑

s∈Sx

∑

f∈F
γs(of ) (6)

Since µ(Sx), µ(S), Σ(Sx) and Σ(S) are only the means and
covariance matrices of the states in the corresponding clusters,
the calculation of Lt(S) as in (5) is computationally tractable.

C. Evaluation and analysis: targeted modelling

By considering each of the SAE accents in turn as the target
accent, the targeted multi-accent acoustic modelling approach

4



was applied to the five training sets described in Section III-A.
Phone recognition performance is shown in the fourth entry of
Table III. The targeted multi-accent models are outperformed
by all other models, yielding the lowest average accuracy
of 64.21%. Worse performance is also achieved on a per-
accent basis for all accents except for IE, for which a slight
improvement over the accent-specific models is observed.

Figure 3 analyses the decision-trees of the targeted multi-
accent acoustic models giving optimal performance on the AE
development set. A striking feature is that the only accent-
based question ever employed by the trees relate to the target
accent AE. In fact, it is possible to show (Appendix C) that
the target-accent-question will always be asked rather than a
non-target-accent-question. Figure 3 shows that 53% of all
questions at the root nodes relate to AE and that this proportion
drops to 27% and 18% for the roots’ children and grand-
children, respectively. Of the 5718 resulting clusters in the
decision-trees, 84.7% are AE-only, 5.3% combine data from
all five accents, and 10% combine data from all the accents
apart from AE. This last group of clusters was consequently
not used during recognition.

In comparison with the analysis of the multi-accent
decision-trees in Figure 2, slightly more accent-based ques-
tions are asked at the root nodes and the proportion of
accent-based questions tapers off much more quickly in the
targeted case. This indicates that earlier separation of the AE
accent occurs in the AE-targeted multi-accent decision-trees.
Increased separation of AE is also observed when comparing
the resulting cluster statistics in the targeted case to those of
the non-targeted case (final paragraph, Section V-B); for the
former, only 301 clusters (5.3% of 5718 clusters) share data
from AE with data from any of the other accents while, for the
latter, this figure is 2876 clusters (22.2% of 12 970 clusters).

Even though most clusters model AE separately, some shar-
ing does occur in the targeted case. However, by comparing the
results of the accent-specific and targeted multi-accent acoustic
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Fig. 3. The percentage of questions that relate to specific accents at various
depths within the decision-trees for the targeted multi-accent acoustic model
set with optimal recognition performance on the AE development set.

model sets in Table III, this small degree of sharing seems to
lead to a deterioration compared to the case where accents are
clustered separately from the outset.

Although the comparative analysis presented in this section
was described for the AE accent, the same trends were ob-
served for the other four accents. Empirically we have there-
fore shown that the decision-trees constructed during targeted
multi-accent acoustic modelling tend to model the target
accent separately. However, this leads to deteriorated perfor-
mance compared to simple accent-specific acoustic modelling.

D. Weighted targeted multi-accent acoustic modelling

The preceding section showed that targeted multi-accent
decision-trees tend strongly towards the separation of the target
accent. In this section we propose a further variant of the
standard decision-tree state clustering algorithm (as applied in
multi-accent modelling) in order to counteract this tendency.

Suppose again that we have a cluster of states S = Sx ∪ St
with the states Sx generating observation vectors for frames
Fx and St generating observation vectors for frames Ft. We
propose that, instead of basing our cluster splitting criterion
solely on the log likelihood Lt(S) on the target states St, we
also assign some weight to the log likelihood Lx(S) of the
non-target states Sx generating the observation vectors Fx. We
calculate this alternative log likelihood as

Lw(S) = wtLt(S) + wxLx(S) (7)

with wt > 0, wx > 0 and wx = 1 − wt. The likelihood
Lt(S) is calculated according to (5) and, analogously, Lx(S)
is calculated as

Lx(S) = −1

2
Nx {log[(2π)n|Σ(S)|]} − 1

2
n(Nt +Nx)

+
1

2
tr{Σ−1(S)Nt[Σ(St)

+ (µ(St)− µ(S))(µ(St)− µ(S))T]} (8)

In this last equation the roles of the target and non-target states
are simply reversed from the case presented in (5).

In Appendix D we show that when wt = wx = 1/2, this
weighted targeted log likelihood reduces to Lw(S) = 1/2L(S)
with L(S) the overall log likelihood as in (2) and (3). Thus,
when using equal weights, this new cluster splitting criterion
is equivalent to that used for multi-accent acoustic modelling
as described in Section V-B. When wt = 1 and wx = 0,
we have Lw(S) = Lt(S), which is the unweighted targeted
case presented in Section VI-B. Both multi-accent acoustic
modelling and targeted multi-accent acoustic modelling are
therefore special cases of this weighted targeted multi-accent
acoustic modelling approach.

E. Evaluation and analysis: weighted targeted modelling

We again considered each of the SAE accents in turn as the
target accent and applied the weighted targeted approach to the
five training sets. Phone recognition performance is shown as
the fifth entry in Table III. For each accent the target weight
wt was optimised on its development set. These weights are
indicated in the final line of Table III.
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The weighted targeted multi-accent model set achieves
improved performance for AE and IE. Although multi-accent
modelling is a special case of the weighted targeted approach,
poorer performance might still occur since the weights are
optimised on a development set. This is illustrated by the
performance on CE, for instance, where accuracy deteriorates
from 66.31% to 66.13%. For BE and EE, the target weight was
determined to be 0.5 and the performance of the multi-accent
models is therefore achieved: 56.56% and 73.94% respectively.
The average performance of the weighted targeted approach is
better than that achieved by any of the other approaches. The
improvements in average accuracy of the weighted targeted
multi-accent models (65.65%, Table III) over the accent-
independent (65.44%) and multi-accent models (64.50%) are
both statistically significant at the 80% level.

Figure 4 analyses the decision-trees of the weighted targeted
multi-accent acoustic models giving optimal performance on
the AE development set. Since the weight assigned to the
target is small (0.51), the decision-trees are very similar to the
non-targeted case shown in Figure 2. Of the 12 823 resulting
clusters in the weighted targeted decision-trees, 13.6% are AE-
only, 22.2% share AE with some other accent(s) and 64.2%
are non-AE. The AE-only clusters are therefore slightly more
here than in the trees analysed in Figure 2 where 13.2% of the
12 970 clusters were AE-only (final paragraph, Section V-B).

Although the improvements of the weighted targeted multi-
accent acoustic modelling approach over the other approaches
are relatively small, they do indicate that some gain can be
obtained by targeting the decision-tree likelihood optimisation
on a specific accent in this manner.

VII. SUMMARY AND CONCLUSIONS

We have described new techniques that extend the standard
decision-tree state clustering algorithm used to construct tied-
state hidden Markov models to allow explicit optimisation on
a target accent. Using databases for the five accents of South
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Fig. 4. The percentage of questions that relate to specific accents at
various depths within the decision-trees for the weighted targeted multi-
accent acoustic model set with optimal recognition performance on the AE
development set (wt = 0.51).

African English, we compared these new techniques to the
accent-specific, accent-independent and multi-accent acoustic
modelling approaches developed in previous work.

We showed that it is possible to derive expressions that
allow the tractable implementation of the new clustering
methods. In a first approach, the decision-tree state clustering
process was altered so that the likelihood criterion used during
decision-tree construction is calculated only on a target accent.
Phonetic or accent-based questions are then asked only when
it is advantageous for the target accent. However, both per-
accent and overall average phone recognition performance
indicated that this approach leads to poorer models compared
to those obtained previously. Further analysis indicated that
this is mostly due to the tendency of the targeted decision-
trees to separate out the target accent into isolated clusters.

In order to alleviate this tendency towards separate mod-
elling, we implemented a further extension to the algorithm in
which the likelihood criterion also assigns some weight to the
likelihood on non-target accents. By weighting the likelihoods
on the target and non-target accents, the amount of separation
could be controlled. Using this weighted targeted multi-
accent modelling approach, very small average improvements
(∼0.2% absolute) were obtained over all other approaches.

In future work the proposed techniques should be compared
to classical adaptation approaches. Clustering is also per-
formed fairly early on in the complete acoustic model training
process and is performed on the training set; changes in state-
tying do not guarantee improvements for the final higher-
mixture acoustic models. This warrants further investigation.

APPENDIX A
LOG LIKELIHOOD OF A CLUSTER OF STATES

The log likelihood that the observation vectors were gener-
ated by the states in S can be calculated as

L(S) = log
∏

f∈F
p(of |S)

=
∑

f∈F
log [N (of |µ(S),Σ(S))] (A.9)

where the observation PDFs are assumed to be single-mixture
Gaussian PDFs:

N (of |µ(S),Σ(S)) =

1√
(2π)n|Σ(S)|

e{− 1
2 (of−µ(S))TΣ−1(S)(of−µ(S))} (A.10)

From (A.10), equation (A.9) can then be written as

L(S) = −1

2

∑

f∈F
log[(2π)n|Σ(S)|]

− 1

2

∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S)) (A.11)

The covariance matrix of the cluster of states S can be
calculated as

Σ(S) =
1

N

∑

f∈F
(of − µ(S))(of − µ(S))T (A.12)

6



where N is the number of frames in F and given by

N =
∑

s∈S

∑

f∈F
γs(of ) (A.13)

with γs(of ) the posterior probability that the observation vec-
tor of is generated by HMM state s. By cross-multiplication,
equation (A.12) becomes

N I =
∑

f∈F
Σ−1(S)(of − µ(S))(of − µ(S))T (A.14)

In [16, p. 62] the matrix identity

xTAx = tr(AxxT) (A.15)

is given, where x is an n×1 vector, A is an n×n matrix and
tr denotes the trace of a matrix. By taking the trace of both
sides of (A.14) and then applying (A.15) we obtain

nN = tr


∑

f∈F
Σ−1(S)(of − µ(S))(of − µ(S))T




=
∑

f∈F
tr
[
Σ−1(S)(of − µ(S))(of − µ(S))T]

=
∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S)) (A.16)

where n is the dimensionality of the observation vectors.
By substituting (A.16) into (A.11) we obtain the result:

L(S) = −1

2

∑

f∈F
log[(2π)n|Σ(S)|]− 1

2
nN

= −1

2
{log[(2π)n|Σ(S)|] + n}N

= −1

2
{log[(2π)n|Σ(S)|] + n}

∑

s∈S

∑

f∈F
γs(of ) (A.17)

APPENDIX B
LOG LIKELIHOOD OF A TARGETED SUBSET OF STATES

The log likelihood of states St generating the associated
observation vectors for frames Ft can be calculated as

Lt(S) =
∑

f∈Ft

log [N (of |µ(S),Σ(S))]

= −1

2

∑

f∈Ft

log[(2π)n|Σ(S)|]

− 1

2

∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S))

= −1

2
Nt {log[(2π)n|Σ(S)|]}

− 1

2

∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S)) (B.18)

where

Nt =
∑

s∈St

∑

f∈F
γs(of ) and Nx =

∑

s∈Sx

∑

f∈F
γs(of ) (B.19)

Calculation of the second term in (B.18) is slightly involved
and we derive an expression for this term as follows.

The covariance matrix of the PDF of the cluster S is

Σ(S) =
1

Nx +Nt

∑

f∈F
(of − µ(S))(of − µ(S))T

=
1

Nx +Nt


∑

f∈Fx

(of − µ(S))(of − µ(S))T

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T


 (B.20)

which leads to

Σ(S) (Nx +Nt) =
∑

f∈Fx

(of − µ(S))(of − µ(S))T

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T (B.21)

An expression for the first term on the right hand side of (B.21)
can be obtained as follows:
∑

f∈Fx

(of − µ(S))(of − µ(S))T

=
∑

f∈Fx

((of − µ(Sx)) + (µ(Sx)− µ(S)))×

((of − µ(Sx)) + (µ(Sx)− µ(S)))T

=
∑

f∈Fx

[
(of − µ(Sx))(of − µ(Sx))T

+ (of − µ(Sx))(µ(Sx)− µ(S))T

+ (µ(Sx)− µ(S))(of − µ(Sx))T

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]

= Nx Σ(Sx) +
∑

f∈Fx

(µ(Sx)− µ(S))(µ(Sx)− µ(S))T

= Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T] (B.22)

where, in the third step, we used the definitions:

µ(Sx) =
1

Nx

∑

f∈Fx

of (B.23)

and

Σ(Sx) =
1

Nx

∑

f∈Fx

(of − µ(Sx))(of − µ(Sx))T (B.24)

By substituting (B.22) into (B.21), it follows that

Σ(S) (Nx +Nt) =

Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T (B.25)

Multiply (B.25) with Σ−1(S) and take the trace:

n(Nx +Nt) =

tr
{
Σ−1(S)Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]}

+
∑

f∈Ft

tr
{
Σ−1(S)(of − µ(S))(of − µ(S))T} (B.26)
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and use the identity in (A.15):

n(Nx +Nt) =

tr
{
Σ−1(S)Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]}

+
∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S)) (B.27)

The last term on the right hand side of (B.27) is the required
second term in (B.18). We thus obtain the result:

Lt(S) = −1

2
Nt {log[(2π)n|Σ(S)|]} − 1

2
n(Nx +Nt)

+
1

2
tr{Σ−1(S)Nx[Σ(Sx)

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]} (B.28)

APPENDIX C
ACCENT-BASED QUESTIONS IN TARGETED

MULTI-ACCENT DECISION-TREES

Consider the two possible cluster splits illustrated in Fig-
ure 5. Assume we are using Lt(S) as splitting criterion. In
(a) the question relates to the target accent, e.g. “is the accent
AE?” (assuming we optimise AE). In (b) the question relates
to some non-target accent, e.g. “is the accent EE?”. We show
that case (a) will always occur rather than case (b).

yes no

Target accent?

S1 S2

S

(a) Question relates to the tar-
get accent.

yes no

Other accent?

S3 S4

S

(b) Question relates to some
non-target accent.

Fig. 5. Two potential questions split the cluster S. Mathematically it can be
shown that (a) will always occur rather than (b).

S2 will contain no states from the target accent and
Lt(S2) = 0; this cluster would therefore be a leaf node.
Similarly, S3 will contain no states from the target accent and
Lt(S3) = 0; again resulting in a leaf node. What distinguishes
the likelihood improvement in the two cases is therefore
Lt(S1) and Lt(S4). The former is given by

Lt(S1) = Lt(St) =
∑

f∈Ft

log [N (of |µ(St),Σ(St))] (C.29)

in accordance with (4). This log likelihood is the one max-
imised when performing maximum likelihood estimation of
µ(St) and Σ(St) on frames Ft. For case (b) we have

Lt(S4) =
∑

f∈Ft

log [N (of |µ(S4),Σ(S4))] (C.30)

with St ⊂ S4. In this case µ(S4) and Σ(S4) are obtained by
maximising the log likelihood on all the frames F4 associated
with S4, which is different to the calculation in (C.30) since
Ft ⊂ F4. It thus follows that Lt(S4) < Lt(S1). The target-
accent-question (a) will therefore always be asked in favour
of a non-target-accent-question (b).

APPENDIX D
EQUAL WEIGHT TARGETED MODELLING

Using the form of (B.18) for both Lt(S) and Lx(S), we
obtain the following result when wt = wx = 1/2:

Lw(S) =
1

2
Lt(S) +

1

2
Lx(S)

= −1

4
(Nx +Nt) {log[(2π)n|Σ(S)|]}

− 1

4

∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S))

= −1

4
(Nx +Nt) {log[(2π)n|Σ(S)|]} − 1

4
n(Nx +Nt)

= −1

4
{log[(2π)n|Σ(S)|] + n}N =

1

2
L(S) (D.31)

where N = Nx +Nt and we used (A.16) in the third line.
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