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Abstract—Capstone projects are used as a final assessment in
undergraduate engineering degrees to ensure alignment with
international standards and profession-specific competencies.
Accurate and consistent assessment of these projects is therefore
crucial. Variability between assessors can also have direct
consequences for a student’s future career path. In light of
previous work that has already indicated that variability is
often high, we ask whether recent advancements in artificial
intelligence and machine learning (ML) could help us gain a
better understanding of what is going on in current assessment
practices of capstone projects within engineering. To do this, we
collect a dataset of previous capstone project reports with the
marks awarded from a single department. We then have a new
set of examiners re-examine the reports. We also train ML models
to predict a mark given a report as input. Quantitatively, our
analysis reveals a large discrepancy of roughly 12% between
examiners. Qualitatively, the ML models show that marks are
most affected by report length and the research area of the
project. This supports previous work showing high inter-assessor
variability, and showcases how ML can be used to start to uncover
reasons for the differences between examiners. We also shared
these findings within the department, leading to initial discussions
to improve assessment practices and consistency.

Index Terms—assessment, capstone projects, machine learning

I. INTRODUCTION

Professional qualifications, globally, are regulated by
standards-generating committees aligned to the relevant pro-
fessional councils. These councils establish criteria for the
demonstration of profession-specific competencies as agreed
by a broad range of expert stakeholders in the associated
community of practice. The competency criteria in engineering,
for example, are framed by the International Engineering
Alliance (IEA), “a global not-for-profit organisation, which
comprises members from 41 jurisdictions within 29 countries,
across seven international agreements. These international
agreements govern the recognition of engineering educational
qualifications and professional competence.”1 In the face of
increased mobility and globalisation, the aim of such centralised
and standardised criteria is to enable mutual recognition of
qualifications across national borders.

While the professional competency criteria may broadly
frame the design and delivery of a particular qualification cur-
riculum, the implementation and interpretation at a pedagogical

1https://www.ieagreements.org/

level remain the preserve of engineering educators appointed as
academics in tertiary institutions. The Bachelor’s in Engineering
(BEng) qualification at South African universities is governed
by a particular standard drawn up by our national engineering
council (the Engineering Council of South Africa), a signatory
to the Washington Accord. The BEng standard specifies specific
minimum knowledge area credits over a four-year programme,
and has recently included a revised range of 11 graduate
attributes (GAs) aligned to the IEA competency profiles. The
GAs specify competency levels, such as the ability to draw
on natural, mathematical and engineering science knowledge,
along with appropriate tools and techniques in addressing
context-specific complex problems. While some of the GAs
are summatively assessed in different knowledge-area subjects
around the final year, it is common practice to use a final-
year capstone project to assess the achievement of multiple
GAs. Although the capstone assessment process differs across
institutions, it usually entails at least two different examiners,
one of whom is potentially external to the institution in
question.

Despite the existence of ostensibly standardised criteria
against which to assess a BEng capstone project report, the
last two decades have seen a significant amount of literature
dedicated to addressing the question of assessor variability [1].
In her early work, Shay [2], [3] examined the interpretations of
engineering academics at South Africa’s top research-intensive
institution. She argued that “multiple subjectivities . . . shape
assessors’ interpretations of student performance” and that
“the contextually complex, communal character of professional
judgement” as exercised by assessors entails a “double truth”:
professional decision-making is always “relational, situational,
pragmatic and value-based” [3, p. 677].

Assessor variability in the case of the final hurdle in
qualification achievement can mean make or break for a
student. The process to achieve consensus in a summative
grade, however, can also offer members of a community
of practice the opportunity to engage dialogically [4] with
questions of values, interpretation and validity. In so doing,
a particular community may be more likely to align their
assessment practices. However, it is simply not practical to
expand the dialogue across the globalised world in which, say,
thousands of engineering qualifications are on offer, all of
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which are intended to be aligned with the IEA competency
profiles. It is for this very reason that the broader professional
community has entrusted the standards alignment role to the
various professional bodies.

Given that we still have evidence of variable assessor
interpretation today, in 2023, and we have made great strides
in developing artificial intelligence (AI) systems, the question
behind the study in this paper is: Can we use a machine learning
(ML) approach to see what is going on in current capstone
assessment practices in an engineering faculty?

The paper presents a collaborative study between researching
academics at a research-intensive institution in South Africa.
The faculty in question is engaged in ongoing programme
renewal processes, with the goal of improving the student
learning experience and implementing more efficient systems
in a large-class, Global South context. Methodologically, the
study focuses on a single department in an engineering faculty
and entailed collecting a dataset of 516 capstone project reports
completed between 2017 and 2021, together with the marks
that were assigned. To quantify assessor variability, a new set of
examiners were asked to re-examine the reports. The findings
reveal a large discrepancy (roughly 12%) between the new and
original examiner assessments. To contextualise this, we train an
ML assessment system that takes a project report and predicts
a mark based on a set of extracted features. The ML model
shows that marks are most affected by report length and the
research area of the project. By communicating these results to
the lecturing staff, we hope to sensitise engineering academics
to the reality of subjectivity in the assessment process and
stimulate discussions to improve consistency.

II. CONCEPTUAL FRAMEWORK

In her sociologically empirical work on higher education
assessment practices, Shay [2], [3], [5] argues that the process
privileges an objective interpretation of reality while downplay-
ing its subjective counterpart. She demonstrates that there is
a “double truth” to assessment in the ostensible alignment to
explicit standardised criteria. Firstly, assessment criteria in the
professions are socioculturally created by specific communities
of practice who attempt to reach a consensus about “what
matters”. The interpretation of these criteria, however, plays
out in different contexts and involves “tacit understandings
of expertise”. Shay highlights the process versus product
stages in the creation of an assessment artefact, such as a
capstone project report or performance. Empirical studies
in engineering capstone assessment demonstrate significantly
divergent assessor variations [2], [4], [6]–[8]. While “assessor
variability is often seen as unwanted bias or error” [1], and there
have been multiple studies on the attempts to develop more
rigorous assessment rubrics, the reality is that contextual, socio-
cultural interpretations of assessment criteria will always exist.

Sociologists such as Bourdieu and Bernstein are concerned
with the question of social structures through which differen-
tiated power relations play out [9], [10]. Shay [3] elaborates
on the subjectivity of assessors, describing “professional
judgement as inescapably (in part) an embodiment of the

assessor”. The assessment process is relational in that it is
“a communicative exchange between the assessor and the
assessed” in which the assessor holds the power. Furthermore,
she qualifies the subjectivity of assessment processes as being
context-dependent and pragmatic. While Shay’s work focused
on the implications for students, and the fact that the assessment
process is not as objective as a student might think, the
increasing call to international alignment of professional stan-
dards to enable mobility suggests that the capstone assessment
process warrants further research. De Jonge et al. [11], in their
examination of assessment practices in the medical profession,
identify key features upon which aligned assessment can
occur. Although their study focuses on alignment between
the student and assessing supervisor, their concept of mutuality
can be extended to any multi-stakeholder assessment process:
when assessment is embedded in the learning process, and
“constructive collaboration” with feedback enables “competency
development towards professional standards” [11].

The emergence of AI in education [12] offers a number
of possibilities. Several studies on educational techniques and
the development of prototypes in statistical reasoning, data
visualisation, and learning analytics have already emerged,
extending the educational arenas that AI is impacting [13],
[14]. Given the ubiquitous use of plagiarism technologies such
as TurnItIn, and the more recent ChatGPT capabilities [15],
ML techniques have advanced sufficiently to allow for their
use in addressing the challenge of assessment interpretation.
The present study intersects with several of the areas in
higher education that Alam [12] identifies as being likely to
be impacted by ML, including automatic grading, teaching
evaluation, and supporting learning and teaching design.

We set out to examine the nature of capstone assessment
practices as evident in a single engineering department at a
research-intensive institution in the Global South. Our longer-
term goal is to determine whether an ML approach can
enable assessors to interrogate assumptions about the ostensible
objectivity of standards, and in so doing achieve improved
consensus and alignment in their future practices.

III. CONTEXT

The Faculty of Engineering at a research-intensive South
African institution has seen significant growth in student
numbers over the past decade, and increasingly diverse cohorts.
Nationally, attrition rates in STEM programmes are high
(around 50% [6]). In order to improve retention, there is
significant funding dedicated to both student support and staff
capacity building. The faculty is actively engaged in programme
renewal projects designed to address our challenges. One
such University Capacity Development Grant (UCDG) project,
the Recommended Engineering Education Project (REEP),
enables academics and academic development staff to design,
implement, evaluate, and research curricular and pedagogical
practices. This paper reports on a REEP initiative to examine
current capstone assessment practices using ML techniques.

This paper looks specifically at the capstone project at the
end of the BEng degree in Electrical & Electronic Engineering.
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Fig. 1. Marks of a capstone project are awarded based on a process involving
two examiners, a convenor, and an external examiner.

In this degree, there are roughly 100 final-year students each
year. Each student completes a unique open-ended project
under the supervision of one of the lecturers in the department.
The project is meant to assess eight of the eleven GAs
(see Sec I): problem-solving; application of scientific and
engineering knowledge; engineering design; investigations,
experiments and data analysis; engineering methods, skills
and tools, including information technology; professional and
technical communication; individual work; and independent
learning ability. Students have four months to complete their
project. After completing the design, implementation and
experimental work, a student writes a detailed report. The
project report is the main deliverable on which a final mark
is based. The body of the report is limited to 40 pages, but
penalties aren’t strictly enforced, so students regularly overrun.

After reports are handed in, the examination process proceeds
as in Fig. 1. Every supervisor also acts as an examiner for
the projects that they supervised (Examiner 1). An additional
examiner from the department is appointed (Examiner 2).
Reports are first evaluated separately by the two examiners.
Each examiner awards a preliminary mark or gives a range
(e.g. 60% to 65%). After the examiners complete their initial
assessments based solely on the reports, an oral is scheduled,
where the student presents their work and answers questions
from the examiners under the guidance of a third lecturer (the
convenor). After the presentation, the convenor facilitates a
discussion between the two examiners to arrive at a combined
mark. This mark is not necessarily the average of the two
individual marks—this will depend on the discussion. The last
step in the entire process is for an external moderator from
outside of the university to confirm the mark that was assigned
at the oral. It is rare for moderators to adjust marks—there
will typically only be isolated cases in a particular year group.

Our main question is to see what is going on in the
assessment practices of these capstone projects. Building on
the growing body of work on using AI and ML for automatic
assessment [16]–[18], our goals are to quantify how consistent
lecturers are and to see what features in a report correlate
with marks. E.g. do lecturers award lower marks for reports
with many spelling mistakes? Or is the number of equations
in a report a better indicator of a mark? Our bigger goal is to
improve assessment quality and alignment between lecturers.
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Fig. 2. The approach used for comparing the originally assigned marks to
those obtained from re-examination or from the machine learning model.

IV. RESEARCH DESIGN

This paper presents a quantitative research study while being
cognisant of the qualitative nature of the problem and the
analysis methods that we employ. The structure of the capstone
projects has already been described above, with Fig. 1 giving
an overview of the examination process. This section details
the rest of the research methodology.

A. Data

We compile a dataset of all the capstone projects submitted
in Electrical & Electronic Engineering between 2017 and 2021.
Reports are anonymised: each student is assigned a unique
random ID and the front page and acknowledgements are
manually removed from each report PDF. We also capture the
identity of the supervising and examining lecturers (Examiners
1 and 2), but also anonymise this information using random
IDs. The complete dataset consists of 516 report PDFs with
the final marks that were awarded (following the process in
Fig. 1). Reports range from 20 to 114 pages.

B. Measuring Assessor Consistency

To measure inter-assessor assessment consistency, we select
30 reports from 2021 for remarking. Six lecturers in the
department were asked to remark the reports, each receiving
five reports from their respective research areas. In almost all
the cases, the re-examiners were different from the original
examiners (but see comments about this in Sec. V-A). The
task set to the re-examiners was to estimate the mark that was
originally assigned to a report.

As illustrated in Fig. 2, we compare the difference between
the originally assigned mark and the mark from re-examination.
Formally, denote the original awarded mark for the nth report
as y(n). Denote the mark from the re-examination as ŷ

(n)
human.

To quantify the difference between the two marks, we calculate
the root mean square error (RMSE):

RMSE =

√√√√ 1

N

N∑
n=1

(
y(n) − ŷ

(n)
human

)2

(1)

A lower RMSE is better. Intuitively, if a model achieves an
RMSE of 9%, this indicates that for most of the reports, the
original and re-examination marks are within 9% of each other.



Capstone project report

Mark

82%

Hand-engineered features

PDF to txt

Linear / neural

x =


8770

5

132
...


No. words

No. figures

No. spelling mistakes

Fig. 3. Text is extracted from a project PDF, features are then extracted using
a customised pipeline, the features are used as input to a linear or neural
network regression model, and a predicted mark is obtained.

To situate the results, we repeat the above analysis but use six
non-expert re-examiners. These non-experts are all postgraduate
students from science and engineering who have not assessed
capstone projects before. Again, we calculate an RMSE for
these non-expert examiners, comparing their marks to those
originally awarded by lecturers.

C. Machine Learning for Automatic Project Report Assessment

We consider several ML approaches that take in a report and
predict a mark. In all cases the model uses reports from between
2017 and 2020 as its training data. The model is then presented
with the same 30 reports from 2021 used for the human re-
examination test. Denoting the ML model’s prediction as ŷ

(n)
ML ,

we calculate the RMSE between the originally assigned mark
and the prediction from the model following (1) as illustrated
at the bottom of Fig. 2.

For our ML models, we follow the methodology illustrated
in Fig. 3. Each project report is originally in PDF format.
These are converted to text using PDF2GO.2 Python’s regular
expression library3 is then used to extract several features
that we think would be indicative of the assigned mark, as
listed in Table I. Apart from supervisor and examiner IDs,
each lecturer is also assigned a category ID related to their
main area of research and expertise: control systems, energy,
electromagnetics, or informatics. The top-ten words are the
word types used most often across all reports, ignoring stop
words (“the”, “if”, etc.).

Not all features might be meaningful. We therefore use a
feature selection approach called lasso regression [19, Sec.
6.2.2] to choose a subset of the most useful features. We
feed these features to a neural network to give the predicted
mark ŷ

(n)
ML . We call this approach Neural: Lasso features in the

experiments below. A second ML approach that we found to
work well is to use a single feature, word count, as input to
a simple linear regression model; we refer to this as Linear:
Word count below. As our most simple ML model, we use a
null model [19, Sec. 3.2] that simply predicts the same mark
for any project, irrespective of what is contained in the input;
the mark is set to the average of the marks of the reports in
the training data (2017 to 2020). Clearly, this is a very naive
approach, but it is useful: if a more advanced ML approach

2https://www.pdf2go.com/
3https://docs.python.org/3/library/re.html

TABLE I
FEATURES EXTRACTED FROM PROJECT REPORTS

Number of pages Average figure caption length
Word count File size
Number of spelling mistakes Supervisor ID
Number of spelling mistake types Examiner ID
Number of figures Supervisor domain ID
Number of tables Examiner domain ID
Number of equations Topic ID
Number of references Top-ten words (true count)
Number of new line starts Top-ten words (fraction of total words)

doesn’t beat this method, we know that it is essentially not
meaningful.

D. Methodology Recap

Taking the above together by referring to Fig. 2, we have
a set of 30 reports that were originally assessed in 2021. We
have a group of re-examiners remark these reports and assign
new marks. We compare this to the marks originally awarded.
In parallel, we repeat this with an automatic ML system.

V. ANALYSIS

A. Quantitative Results

Table II gives the quantitative results where ML models and
human re-examiners were asked to predict the mark that was
assigned to a capstone project. A lower RMSE is better.

The first observation is that the null model performs well.
This model simply awards the average mark obtained between
2017 and 2020 to all the reports in this 2021 evaluation set,
irrespective of the content of the report (this average is 67.06%).
Although a low RMSE of 14.73% is therefore surprising, we
found that this is due to the marks falling in a narrow band
around the average; Fig. 4 shows a histogram of the marks
in the training data: it is clear that the majority of reports are
assigned marks between 60% and 80%. An average prediction
for all reports therefore captures most of the assigned marks.

Looking at the performance of the human examiners in
Table II, we see that the expert re-examiners are typically within
12.21% of the original examiners. Despite being better than the
null model, the question of whether this is an acceptable margin
of error is open for discussion (see Sec. VI). But it is clear that
the re-examiners do not perfectly predict the same marks as

TABLE II
A COMPARISON OF HUMAN AND MACHINE LEARNING PERFORMANCE ON

PREDICTING THE MARK AWARDED TO A CAPSTONE PROJECT

Model RMSE

Null model 14.73
Linear: Word count 13.73
Neural: Lasso features 11.22

Human experts 12.21
Human non-experts 15.03

https://www.pdf2go.com/
https://docs.python.org/3/library/re.html
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Fig. 4. A histogram of the marks assigned to reports in the training data
(2017 to 2020).

those originally awarded (which would give an RMSE of 0%).
There is, fortunately, a bit of good news for the lecturers: the
expert human examiners fare much better than the non-experts
(the non-experts get a score worse than the null model).

We also looked at the performance of individual re-examiners.
For the experts, there were big differences in individual
performance, with a best RMSE of 1.84% and a worst
RSME of 18.93%. For the non-experts, RMSEs were between
6.98% and 36.62%. As mentioned, in almost all cases, the
expert re-examiners did not match examiners involved in the
original examination. However, there were two cases where the
examiners and re-examiners did actually overlap. In both cases
the re-examiners indicated that they could not recall being an
original examiner (despite this being the case), and, in both
cases, the re-examiners awarded exactly the same mark as they
did originally.

Comparing the human results to linear and neural ML
approaches in Table II, we see that the neural network taking
in features selected with lasso regression comes closest to the
marks originally awarded (RMSE of 11.22%). Given that this
is slightly better than the 12.21% from the human experts, this
indicates that the ML methodology would be hard to improve,
given the data which is based on the assessment practices
currently followed in the department.

B. Qualitative Results: The Most Informative Features

The close performance between the best ML approach and
the human experts motivates us to use the ML method to
analyse the type of aspects that examiners look at when
examining reports. To probe the ML model, we use lasso
regression and look at its selection as we force it to select an
increasingly smaller number of features. This is illustrated in
Fig. 5. Intuitively, the idea is that features that snap to zero
first (left on plot) are less important than those that snap to
zero later (right on plot).

We see that the spelling mistake weights snap to zero first,
indicating that these are least important, while features like
the number of words and average figure caption length snap
to zero last and are therefore deemed most important. Many
lecturers indicated beforehand that spelling mistakes would
be a very good feature, so it is surprising that the number
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Fig. 5. Standardised model coefficients as the weight parameter in lasso
regression is increased. Intuitively, the earlier that a feature coefficient snaps
to zero, the less indicative it is of a report mark.

of spelling mistakes seems to be far less useful compared to
features measuring the length of a report.

The research area of the report is not included explicitly
in the figure, but it is captured indirectly: The count of the
word “voltage” snaps to zero very late in Fig. 5 (i.e. it is
very informative). The word “voltage” is often associated with
projects from the energy area, and the higher the count of
this word, the lower the predicted mark, as indicated by the
negative coefficient. Similarly the word “e” is often used as a
symbol in energy research, and again the negative coefficient
indicates that this negatively affects a mark. In contrast, “n”
is often used to denote the number of items in a set in the
machine learning research area; the more this word is used,
the higher the mark.

Taking this analysis together qualitatively, lecturers give
higher marks to longer reports; and the area in which a project
falls also impacts the predicted mark, with areas like machine
learning achieving higher marks than areas like energy.

It is important here to emphasise the difference between
correlation and causation. It might be tempting to conclude
that lecturers are unfairly biased towards shorter reports. But
it could also be that better projects require longer reports, and
then it is good that report length and marks are positively
correlated. To state this differently, a long report doesn’t cause
a better project (but it could be indicative of one).

VI. DISCUSSION

Before setting out on this study, the authors informally
asked lecturers in the department what they would deem as
an acceptable margin of error. Most lecturers indicated an
acceptable margin of between 5% and 10%. The best ML
approach in Table II comes close to this, with an RMSE of
just above 11%. During the study, we also asked the expert
re-examiners how close they believed they were to the assigned
mark, and most lecturers indicated that they would be within
5%. The scores from Table II indicate that the assessors are
much worse than they anticipated.

Despite the questions of correlation and causation, the
analysis above still raises a crucial question: Why do the
examiners differ so much in their assessments? This should



be investigated in detail in follow-up work, but we briefly
outline some potential reasons. It is clear that the research
area influences interpretation, e.g. a newer research area like
machine learning seems to result in higher marks than a more
established area such as energy. So do perspectives on what
counts change over time? Similarly, it could be argued that
assessor perspectives shift and develop over time with increased
assessment experience—the big range of individual RSMEs
across individual examiners points in this direction. There are
also differences in the original examination process (Fig. 1)
compared to the re-examination process (Fig. 2). For instance,
in re-examination, a mark is obtained from a single examiner
without a discussion with another examiner. Moreover, in the
original process, there is an oral examination, which can affect
perceptions. In the original process, examiners are also aware of
the student’s identity, in contrast to the re-examination process
where identifying information is removed. This can further
influence perceptions, e.g. an examiner might be aware of a
particular student’s past performance.

The variability in assessments has a direct implication for
a student. The difference between failing and passing has big
financial implications. Similarly, the difference between achiev-
ing a distinction or not directly influences access to subsequent
post-graduate studies. Effectively speaking, assessors hold the
power of determining a student’s future career. They are, indeed,
entrusted to hold this power: they are appointed as experts in
their fields and are ostensibly following the prescribed standards
as internationally accepted.

After performing the qualitative analysis above, we also
had a feedback session where we shared the findings with the
department. Many lecturers indicated informally that they were
unsurprised by the findings indicating poor consistency. Many
lecturers also started discussing strategies for how consistency
could be improved during and after the session, especially
given the potential consequences for a student.

Inconsistency between assessors is a known phenomenon—
as shown by the studies summarised in Sec. II. Our hope is that
this study would start a conversation about how ML technology
can be used do identify and address these inconsistencies.

VII. CONCLUSION

This paper set out to quantitatively and qualitatively use
machine learning (ML) to gain a better understanding of current
assessment practices of capstone projects within an engineering
department at a top research institution in the Global South.
Our methodology involved collecting a dataset of previous
project reports, and then comparing the originally assigned
marks to those assigned by a set of re-examiners. We also
looked at the performance of an ML model on predicting the
original assigned mark. The analysis showed that the inter-
assessor variation is large (roughly 12% in RMSE), which is
also similar to our best ML approach. The ML model also
showed that marks correlate most with features measuring
report length and the research area of the report. We engaged
with the stakeholders in order to start discussions about how
assessment consistency can be improved. Future work will

look particularly into whether an ML approach can be used to
improve consistency across lecturers. E.g. an ML system could
make a first-pass prediction. Or it could be used to highlight
areas of bias for a particular lecturer. These are exciting avenues
for future endeavours.
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