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Abstract—In this paper we investigate whether it is possible
to combine speech data from two South African accents of
English in order to improve speech recognition in any one accent.
Our investigation is based on Afrikaans-accented English and
South African English speech data. We compare three acoustic
modelling approaches: separate accent-specific models, accent-
independent models obtained by straightforward pooling of data
across accents, and multi-accent models. For the latter approach
we extend the decision-tree clustering process normally used to
construct tied-state hidden Markov models by allowing accent-
specific questions. We compare systems that allow such sharing
between accents with those that do not. We find that accent-
independent and multi-accent acoustic modelling yield similar
results, both improving on accent-specific acoustic modelling.

I. INTRODUCTION

In South Africa, English is the lingua franca as well as
the language of government, commerce and science. However,
the country has 11 official languages and only 8.2% of the
population use English as a first language [1]. English is there-
fore usually used by non-mother-tongue speakers resulting in
a large variety of accents. Furthermore, the use of different
accents is not regionally bound as is often the case in related
research. Multi-accent speech recognition is thus especially
relevant in the South African context.

For the development of any speech recognition system a
large quantity of annotated speech data is required. In general,
the more data are available, the better the performance of the
system. It is in this light that we would like to determine
whether data from different South African accents of English
can be combined to improve the performance of a speech
recognition system in any one accent. This involves exploring
phonetic similarities between accents and exploiting these to
obtain more robust and effective acoustic models. In this paper
we present different acoustic modelling approaches for two
South African accents of English: Afrikaans-accented English
and South African English.

II. RELATED RESEARCH

Two main approaches are encountered when considering
literature dealing with multi-accent or multidialectal' speech

! According to [2], the term accent refers only to pronunciation differences,
while dialect refers to differences in both grammar and vocabulary. Non-native
speech refers to speech from a speaker using a language different from his or
her first language. We will adhere to these definitions.

recognition. Some authors consider modelling accents as pro-
nunciation variants, which are added to the pronunciation
dictionary employed by a speech recogniser [3]. Other authors
focus on multi-accent acoustic modelling. These acoustic mod-
elling approaches are often similar to techniques employed in
multilingual speech recognition.

A. Multi-Accent Acoustic Modelling

One approach to multi-accent acoustic modelling is to train
a single accent-independent acoustic model set by pooling
accent-specific data across all accents considered. An alterna-
tive is to train separate accent-specific systems that allow no
sharing between accents. These two “traditional” approaches
have been considered and compared by various authors, in-
cluding Van Compernolle et al. [4] for Dutch and Flemish,
Beattie et al. [5] for three regional dialects of American
English, Fischer et al. [6] for German and Austrian dialects
and Chengalvarayan [7] who considered American, Australian
and British dialects of English. From the findings of these
authors it seems that in the majority of cases accent-specific
modelling leads to superior speech recognition performance
compared to accent-independent modelling. However, this is
not always the case (e.g. [7]) and the comparative merits of
the two approaches appear to depend on factors such as the
abundance of training data as well as the degree of similarity
between the accents involved.

In cases where accent-specific data are insufficient to train
accent-specific models, adaptation techniques such as maxi-
mum likelihood linear regression (MLLR) and maximum a
posteriori (MAP) adaptation can be employed. For example,
MAP and MLLR have been successfully employed in the
adaptation of Modern Standard Arabic acoustic models for
improved recognition of Egyptian Conversational Arabic [8].
However, results obtained by Diakoloukas et al. [9] in the
development of a multidialectal system for two dialects of
Swedish suggest that, when larger amounts of target accent
data are available, it is advantageous to simply train models
on the target accented data alone.

B. Multilingual Acoustic Modelling

The question of how best to construct acoustic models for
multiple accents is similar to the question of how to construct
acoustic models for multiple languages. Multilingual speech
recognition has received some attention over the last decade,
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most notably by Schultz and Waibel [10]. Their research
considered large vocabulary continuous speech recognition of
10 languages spoken in different countries and forming part
of the GlobalPhone corpus. In addition to the two traditional
approaches already mentioned (pooling and separate models),
these authors evaluated acoustic models in which selective
sharing between languages was allowed by means of appro-
priate decision-tree training of tied-mixture HMM systems.
In tied-mixture systems, the HMMs share a single large set
of Gaussian distributions with state-specific mixture weights.
This configuration allows similar states to be clustered using
entropy decrease calculated using the mixture weights as
a measure of similarity. The research found that language-
specific systems exhibited the best performance among the
three approaches.

Multilingual acoustic modelling of four South African lan-
guages: Afrikaans, English, Xhosa and Zulu, was addressed
in [11]. Similar techniques to those proposed by Schultz
and Waibel were employed, but in this case applied to tied-
state HMMs. In a tied-state system, each HMM state has an
associated Gaussian mixture distribution and these distribu-
tions may be shared between corresponding states of different
HMMs. The clustering procedure for tied-state systems will be
described in Section IV-B. Modest average performance im-
provements were shown over language-specific and language-
independent systems using multilingual HMMs.

C. Recent Research

More recently, Caballero et al. presented research which
dealt with five dialects of Spanish spoken in Spain and Latin
America [12]. Different approaches to multidialectal acoustic
modelling were compared based on decision-tree clustering
algorithms using tied-mixture systems. A dialect-independent
model set (obtained by pooling) was compared to a multidi-
alectal model set (obtained by allowing decision tree questions
relating to both context and dialect). These approaches are
similar to those applied in both [10] and [11]. In isolated
word recognition experiments, the multidialectal model set
was shown to outperform the dialect-independent model set.

III. SPEECH DATABASES

Our experiments were based on the African Speech Tech-
nology (AST) databases [13], which were also used in [11].

A. The AST Databases

The eleven AST databases were collected in five languages
spoken in South Africa as well as a number of non-mother-
tongue variants. The databases consists of annotated telephone
speech recorded over both mobile and fixed telephone net-
works and contain a mix of read and spontaneous speech.
The types of read utterances include isolated digits, digit
strings, money amounts, dates, times, spellings and pho-
netically rich words and sentences. Spontaneous responses
include references to gender, age, home language, place of
residence and level of education. Utterances were transcribed
both phonetically and orthographically.

TABLE I
TRAINING AND TEST SETS FOR EACH ACCENT OF ENGLISH

Accent Set Speech No. of No. of Phone
(min) utterances  speakers tokens
English train 356.95 9879 245 178954
Afrikaans  train 421.14 11344 276 199336
English dev 14.18 401 10 6344
Afrikaans  dev 14.36 429 12 6869
English eval 23.96 702 18 11304
Afrikaans  eval 24.16 689 21 10708

Five English databases were compiled as part of the AST
project: South African English from mother-tongue English
speakers, as well as English from Black, Coloured, Asian
and Afrikaans non-mother-tongue English speakers. In this
research we made use of the South African English (EE) and
Afrikaans English (AE) databases. The phonetic transcriptions
of both these databases were obtained using a common IPA-
based phone set consisting of 50 phones.

B. Training and Test Sets

Each database was divided into a training (train), develop-
ment (dev) and evaluation (eval) set, as indicated in Table I.
The EE and AE training sets contain 5.95 and 7.02 hours
of speech audio data respectively. The evaluation set contains
approximately 24 minutes of speech from 20 speakers in each
accent. There is no speaker-overlap between the evaluation and
training sets.

The development set consists of approximately 14 minutes
of speech from 10 speakers in each accent. This data was used
only for the optimisation of the recognition parameters before
final evaluation on the evaluation set. There is no speaker-
overlap between the development set and either the training
or evaluation sets. For the development and evaluation sets
the ratio of male to female speakers are approximately equal
and all sets contain utterances from both land-line and mobile
phones.

IV. GENERAL EXPERIMENTAL METHODOLOGY

Speech recognition systems were developed using the HTK
tools [14] following three different acoustic modelling ap-
proaches that will be described in Section V. An overview of
the common setup of these systems are given in the following.

A. General Setup

Speech audio data were parameterised as 13 Mel-frequency
cepstral coefficients (MFCCs) with their first and second
order derivatives to obtain 39 dimensional feature vectors.
Cepstral mean normalisation (CMN) was applied on a per-
utterance basis. The parameterised training set from each ac-
cent was used to obtain three-state left-to-right single-mixture
monophone HMMs with diagonal-covariance using embedded
Baum-Welch re-estimation. These monophone models were
then cloned and re-estimated to obtain initial accent-specific
cross-word triphone models which were subsequently clus-
tered using decision-tree state clustering [15]. Clustering was
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followed by a further five iterations of re-estimation. Finally,
the number of Gaussian mixtures per state was gradually
increased, each increase being followed by a further five
iterations of re-estimation, yielding diagonal-covariance cross-
word triphone HMMs with three states per model and eight
Gaussian mixtures per state.

The distinction between the different acoustic modelling
approaches considered is based solely on different methods of
decision-tree clustering. Since decision-tree state clustering is
central to the research presented here, it is summarised below.

B. Decision-Tree State Clustering

The clustering process is normally initiated by pooling
the data of corresponding states from all context-dependent
phones with the same base phone in a single cluster. This is
done for all context-dependent phones observed in the training
set. A set of linguistically-motivated questions is then used to
split these initial clusters. Such questions may, for example,
ask whether the left context of a particular context-dependent
phone is a vowel or whether the right context is a silence. Each
potential question results in a split which yields an increase in
likelihood of the training set and for each cluster the optimal
question is determined. Based on this splitting criteria, clusters
are subdivided repeatedly until either the increase in likelihood
or the number of frames associated with a resulting cluster falls
below a certain threshold (the minimum cluster occupancy).

The result is a phonetic binary decision-tree where the leaf
nodes indicate clusters of context-dependent phones for which
data should be pooled. The advantage of this approach is
that each state of a context-dependent phone not seen in the
training set can be associated with a cluster using the decision-
trees. This allows the synthesis of models for unseen context-
dependent phones.

C. Language Models

Comparison of recognition performance was based on
phone recognition experiments. Since the presented work con-
siders only the effect of the acoustic models, recognition of a
specific test set was performed using a language model trained
on the training set of the same accent. Using the SRILM
toolkit [16], backoff bigram language models were trained for
each accent individually from the corresponding training set
phone transcriptions [17]. Absolute discounting was used for
the estimation of language model probabilities [18]. Language
model perplexities are shown in Table II for the two English
accents. The development set was used to optimise the word
insertion penalties and language model scaling factors used
during recognition.

V. ACOUSTIC MODELLING APPROACHES

We considered three acoustic modelling approaches. Similar
approaches were followed in [10] and [11] for multilingual
acoustic modelling, and in [12] for multi-dialectal acoustic
modelling. The fundamental aim of our research was to deter-
mine which acoustic modelling approach takes best advantage
of the data available to us (Section III-B).

TABLE I
BIGRAM LANGUAGE MODEL PERPLEXITIES MEASURED ON THE
EVALUATION TEST-SETS

Accent Bigram types Perplexity
English 1542 12.63
Afrikaans 1894 14.37

A. Accent-Specific Acoustic Models

As a first approach, a baseline system was developed
by constructing accent-specific model sets where no sharing
is allowed between accents. Corresponding states from all
triphones with the same basephone are clustered separately
for each accent, resulting in separate decision-trees for the
two accents. The decision-tree clustering process employs only
questions relating to phonetic context. The structure of the
resulting acoustic models is illustrated in Figure 1 for both an
Afrikaans-accented and a South African English triphone of
basephone [i] in the left context of [j] and the right context
of [k]. This approach results in a completely separate set
of acoustic models for each accent since no data sharing is
allowed between triphones from different accents. Informa-
tion regarding accent is thus considered more important than
information regarding phonetic context.

B. Accent-Independent Acoustic Models

For the second approach, a single accent-independent model
set was obtained by pooling accent-specific data across the two
accents for phones with the same IPA classification. A single
set of decision-trees is constructed for both accents and em-
ploys only questions relating to phonetic context. Information
regarding phonetic context is thus regarded as more important
than information regarding accent. Figure 2 illustrates the
acoustic models, again for both an Afrikaans-accented and a
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Fig. 1. Accent-specific acoustic models.
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Fig. 2. Accent-independent acoustic models.

South African English triphone. Both triphone HMMs share
the same Gaussian mixture probability distributions as well as
transition probabilities.

C. Multi-Accent Acoustic Models

The third and final approach involved obtaining multi-accent
acoustic models. This approach is similar to that followed
for accent-independent acoustic modelling. Again, the state
clustering process begins by pooling corresponding states from
all triphones with the same basephone. However, in this case
the set of decision-tree questions take into account not only
the phonetic character of the left and right context, but also the
accent of the basephone. The HMM states of two triphones
with the same IPA symbols but from different accents can
therefore be kept separate if there is a significant acoustic
difference, or can be merged if there is not. Tying across
accents is thus performed when triphone states are similar, and
separate modelling of the same triphone state from different
accents is performed when there are differences. A data-driven
decision is made regarding whether accent information is more
or less important than information relating to phonetic context.

The structure of such multi-accent acoustic models is il-
lustrated in Figure 3. Here the centre state of the triphone
[71-[i]+[k] is tied across accents while the first and last states
are modelled separately. As for the the accent-independent
acoustic models, the transition probabilities of all triphones
with the same basephone are tied across both accents.

VI. EXPERIMENTAL RESULTS

The acoustic modelling approaches described in Section V
were applied to the combination of the Afrikaans-accented and
South African English training sets described in Section III.
Since the optimal size of an acoustic model set is not known
beforehand, several sets of HMMs were produced by varying
the likelihood improvement threshold during the decision-tree
clustering process (described in Section IV-B). The minimum
cluster occupancy was set to 100 frames for all experiments.
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Fig. 3. Multi-accent acoustic models.

A. Analysis of Recognition Performance

Figure 4 shows the average phone recognition accuracy
measured on the evaluation set using the final eight-mixture
triphone models. For each approach a single curve indicating
the average accuracy between the accents is shown. The
number of states for the accent-specific systems is taken to
be the sum of the number of states in each component accent-
specific HMM set. The number of states for the multi-accent
systems is taken to be the total number of unique states
remaining after decision-tree clustering and hence takes cross-
accent sharing into account.

The results presented in Figure 4 indicate that, over the
range of models considered, accent-specific modelling per-
forms worst while accent-independent and multi-accent mod-
elling yield similar performance improvements. The best
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of distinct HMM states.
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Fig. 5. Analysis showing the percentage of questions that are accent-based

at various depths within the multi-accent decision-trees for the largest multi-
accent system.

accent-specific system yields an average phone recognition
accuracy of 69.44% (4635 states) while the best accent-
independent system (3673 states) and the best multi-accent
system (3006 states) both yield an average accuracy of
70.05%. The improvements of the best accent-independent and
the multi-accent systems compared to the best accent-specific
system were found to be statistically significant at the 95%
level using bootstrap confidence interval estimation [19]. Sim-
ilar trends were observed in the phone recognition accuracy
measured separately on the evaluation set of each accent.

The results clearly indicate that there is little to no ad-
vantage in multi-accent acoustic modelling relative to accent-
independent modelling for the two accents considered. When
comparing the two approaches where the difference in per-
formance is relatively high and the number of physical states
is approximately equal (3006 states for the multi-accent sys-
tem and 3104 states for the accent-independent system) the
absolute improvement of 0.17% is found to be statistically
significant only at the 70% level. The current practice of
simply pooling data across accents when considering acoustic
modelling of English is thus supported by our findings.

Our results are however in contrast to the findings of many
authors where accent-specific modelling seemed to improve
recognition performance [4]-[6], although they do agree with
the findings of some studies [7]. In general, the proficiency of
Afrikaans English speakers is high, which might suggest that
the two accents are quite similar and thus explain why accent-
independent modelling is advantageous [20]. The results are
also in contrast to those presented in [11] where multilingual
acoustic modelling of four South African languages was
considered, and which were also based on the AST databases.
In that research, modest improvements were seen using mul-
tilingual HMMs relative to language-specific and language-
independent systems, while the language-independent models
performed worst. While there is a strong difference between
the multilingual and multi-accent cases, similar databases were
used and hence the results are comparable to some degree.
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respectively for the largest multi-accent system.

B. Analysis of the Decision-Trees

Figure 5 analyses the decision-trees of the largest multi-
accent system (10302 states). The figure shows that, although
accent-based questions are most common at the root node
of the decision-trees and become increasingly less frequent
towards the leaves, at most depths between approximately
12% and 16% of questions are accent-based. This suggests
that accent-based questions are more or less evenly distributed
through the different depths of the decision-trees and that
early partitioning of models into accent-based groups is not
necessarily performed or advantageous. This is in contrast to
the multilingual case where the percentage of language-based
questions drops from more than 45% at the root node to less
than 5% at the 10" level of depth [11].

The minimal influence of accent is emphasised further when
considering the contribution to the log likelihood improvement
made by the accent-based and phonetically-based questions
respectively during the decision-tree growing process. Figure 6
illustrates this improvement as a function of depth within
the decision-tree and clearly shows that phonetically-based
questions make a much larger contribution to the log likelihood
improvement than the accent-based questions. It is evident
that, at the root node, the greatest log likelihood improvement
is afforded by the phonetically-based questions (approximately
77% of the total improvement). At no depth do the accent-
based questions yield log likelihood improvements comparable
to those of the phonetically-based questions. This is again in
contrast to the multilingual case, where approximately 74%
of the total log likelihood improvement is due to language-
based questions at the root node and the decision-trees tend
to quickly partion models into language-based groups [11].

C. Analysis of Cross-Accent Data Sharing

In order to determine to what extent data sharing takes
place for the various multi-accent systems, we considered the
proportion of decision-tree leaf nodes (which correspond to the
state clusters) that are populated by states from both accents. A
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cluster populated by states from a single accent indicates that
no sharing is taking place, while a cluster populated by states
from both accents indicates that sharing is taking place across
accents. Figure 7 illustrates how these proportions change as
a function of total number of clustered states in a system.
From Figure 7 it is apparent that as the number of clustered
states is increased, the proportion of clusters consisting of
both accents decreases. This indicates that the multi-accent
decision-trees tend towards separate clusters for each accent
as the likelihood improvement threshold is lowered, as we
might expect. It is interesting to note that, although our find-
ings suggest that multi-accent and accent-independent systems
give similar performance, the optimal multi-accent system
(3006 states) models approximately 50% of state clusters
separately for each accent. Thus, although accent-independent
modelling is advantageous when compared to accent-specific
modelling, multi-accent modelling does not impair recognition
performance even though a large degree of separation takes
place. For the optimal multilingual system in [11], only 20% of
state clusters contained more than one language, emphasising
that the multi-accent case is much more prone to sharing.

VII. CONCLUSIONS AND FUTURE WORK

The evaluation of three approaches to multi-accent acoustic
modelling of Afrikaans-accented English and South African
English has been presented. The aim was to find the best
acoustic modelling approach given the available accented AST
data. Tied-state multi-accent models, obtained by introducing
accent-based questions into the decision-tree clustering pro-
cess and thus allowing for selective sharing between accents,
were found to yield similar results to accent-independent
models, obtained by simply pooling data across accents. Both
these approaches were found to be superior to accent-specific
modelling. Further analysis of the decision-trees constructed
during the multi-accent modelling process indicated that ques-
tions relating to phonetic context resulted in a much larger
contribution to the likelihood increase than the accent-based
questions, although a significant proporation of state clusters

did contain only one accent. We conclude that, for the two
accented speech databases considered, the inclusion of accent-
based questions does not impair recognition performance, but
also does not yield any significant gain. Future work includes
considering less-similar English accents (e.g. Black English
and South African English) and multi-accent acoustic mod-
elling of all five English accents found in the AST databases.
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