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Abstract

Zero-resource speech technology is a growing research area
that aims to develop methods for speech processing in the ab-
sence of transcriptions, lexicons, or language modelling text.
Early term discovery systems focused on identifying isolated
recurring patterns in a corpus, while more recent full-coverage
systems attempt to completely segment and cluster the audio into
word-like units—effectively performing unsupervised speech
recognition. This article presents the first attempt we are aware
of to apply such a system to large-vocabulary multi-speaker data.
Our system uses a Bayesian modelling framework with segmen-
tal word representations: each word segment is represented as
a fixed-dimensional acoustic embedding obtained by mapping
the sequence of feature frames to a single embedding vector.
We compare our system on English and Xitsonga datasets to
state-of-the-art baselines, using a variety of measures including
word error rate (obtained by mapping the unsupervised out-
put to ground truth transcriptions). Very high word error rates
are reported—in the order of 70–80% for speaker-dependent
and 80–95% for speaker-independent systems—highlighting the
difficulty of this task. Nevertheless, in terms of cluster qual-
ity and word segmentation metrics, we show that by imposing
a consistent top-down segmentation while also using bottom-
up knowledge from detected syllable boundaries, both single-
speaker and multi-speaker versions of our system outperform a
purely bottom-up single-speaker syllable-based approach. We
also show that the discovered clusters can be made less speaker-
and gender-specific by using an unsupervised autoencoder-like
feature extractor to learn better frame-level features (prior to
embedding). Our system’s discovered clusters are still less pure
than those of unsupervised term discovery systems, but provide
far greater coverage.

Keywords: Unsupervised speech processing, representation
learning, segmentation, clustering, language acquisition.

1. Introduction

Despite major advances in supervised speech recognition over
the last few years, current methods still rely on huge amounts of
transcribed speech audio, pronunciation dictionaries, and texts
for language modelling. The collection of these pose a major
obstacle for speech technology in under-resourced languages.
In some extreme cases, unlabelled speech data might be the only
available resource. In this zero-resource scenario, unsupervised
methods are required to learn representations and linguistic

structure directly from the speech signal. Such methods can,
for instance, make it possible to search through a corpus of
unlabelled speech using voice queries [1], allow topics within
speech utterances to be identified without supervision [2], or can
be used to automatically cluster related spoken documents [3].
Similar techniques are required to model how human infants
acquire language from speech input [4], and for developing
robotic applications that can learn a new language in an unknown
environment [5, 6].

Interest in zero-resource speech processing has grown con-
siderably in the last few years, with two central research areas
emerging [7,8]. The first deals with unsupervised representation
learning, where the task is to find speech features (often at the
frame level) that make it easier to discriminate between mean-
ingful linguistic units (phones or words). This task has been
described as ‘phonetic discovery’, ‘unsupervised acoustic mod-
elling’ and ‘unsupervised subword modelling’, depending on the
type of feature representations that are produced. Approaches
include those using bottom-up trained Gaussian mixture mod-
els (GMMs) to produce frame-level posteriorgrams [9, 10], us-
ing unsupervised hidden Markov models (HMMs) to obtain
discrete categorical output in terms of discovered subword
units [2, 11, 12], and using unsupervised neural networks (NNs)
to obtain frame-level continuous vector representations [13–15].

The second area of zero-resource research deals with unsu-
pervised segmentation and clustering of speech into meaningful
units. This is important in tasks such as query-by-example
search [16, 17], where a system needs to find all the utter-
ances in a corpus containing a spoken query, or in unsupervised
term discovery (UTD), where a system needs to automatically
find repeated word- or phrase-like patterns in a speech collec-
tion [1, 18, 19]. UTD systems typically find and cluster only
isolated acoustic segments, leaving the rest of the data as back-
ground. We are interested in full-coverage segmentation and
clustering, where word boundaries and lexical categories are
predicted for the entire input. Several recent studies share this
goal [5, 20–23]. Successful full-coverage segmentation sys-
tems would perform a type of unsupervised speech recognition.
This would allow downstream applications, such as query-by-
example search and speech indexing (grouping together related
utterances in a corpus), to be developed in a manner similar to
when supervised systems are available. Unsupervised segmen-
tation and clustering, however, is a daunting task, and current
performance lags behind that of even minimally-supervised sys-
tems. Nevertheless, previous work has shown that high-error
rate unsupervised systems can still be used effectively for a wide
range of tasks including topic identification and clustering of
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spoken documents [2, 3, 24], speech-to-speech translation of
low-resource languages [25, 26], language recognition [27], and
in improving purely supervised keyword search systems [7].

In previous work [28], we introduced a novel unsuper-
vised segmental Bayesian model for full-coverage segmentation
and clustering of small-vocabulary speech. Other approaches
mostly perform frame-by-frame modelling using subword dis-
covery with subsequent or joint word discovery. In contrast,
our approach models whole-word units directly using a fixed-
dimensional embedding representation; any potential word seg-
ment (of arbitrary length) is mapped to a fixed-length vector, its
acoustic word embedding, and the model builds a whole-word
acoustic model in the embedding space while jointly performing
segmentation. In [28] we evaluated the model in an unsuper-
vised digit recognition task using the TIDigits corpus. Although
it was able to accurately segment and cluster the small number
of word types (lexical items) in the data, the same system could
not be applied directly to multi-speaker data with larger vocabu-
laries. This was due to the large number of embeddings that had
to be computed, and the efficiency of the embedding method
itself.

In this paper, we present a new system that uses the same
overall framework as our previous small-vocabulary system, but
with several changes designed to improve efficiency and speaker
independence, allowing us to scale up to large-vocabulary multi-
speaker data. We believe this is the first full-coverage unsuper-
vised speech recognition system to be applied in this regime;
previous systems have either focused on identifying isolated
terms [1, 18, 19], were speaker-dependent [22, 23], or used only
a small vocabulary [21, 28]. Given this is the first attempt we
are aware of, the results reported here will serve as a useful
baseline for future work on unsupervised speech recognition of
multi-speaker data with realistic vocabularies.

For our efficiency improvements, we use a bottom-up unsu-
pervised syllable boundary detection method [23] to eliminate
unlikely word boundaries, reducing the number of potential
word segments that need to be considered. We also use a com-
putationally much simpler embedding approach based on down-
sampling [29].

For better speaker-independent performance, we incorporate
a frame-level representation learning method introduced in our
previous work [30]: the correspondence autoencoder (cAE).
The cAE uses noisy word pairs identified by an unsupervised
term detection system to provide weak supervision for training
a deep NN on aligned frame pairs; features are then extracted
from one of the network layers. In [30] we showed that cAE
frame-level features outperform traditional features (MFCCs)
and GMM-based representations in a multi-speaker intrinsic
evaluation. Here, we show that the cAE features also improve
performance of our full-coverage multi-speaker segmentation
and clustering system (relative to MFCC features). These results
are the first to show that unsupervised representation learning
can improve a full-coverage zero-resource system.

We evaluate our approach in both speaker-dependent and
speaker-independent settings on conversational speech datasets
from two languages: English and Xitsonga. Xitsonga is an
under-resourced southern African Bantu language [31]. These
datasets were also used as part of the Zero Resource Speech
Challenge (ZRS) at Interspeech 2015 [8] and we show that our
system outperforms competing systems [8, 19, 23] on several of
the ZRS metrics. These metrics measure aspects ranging from

cluster quality to segmentation performance. In particular, we
find that by proposing a consistent segmentation and cluster-
ing over a whole utterance, our approach makes better use of
the bottom-up syllabic constraints than the purely bottom-up
syllable-based system of [23]. Moreover, we achieve similar F -
scores for word tokens, types, and boundaries whether training
in a speaker-dependent or speaker-independent mode.

By mapping the unsupervised output to ground truth tran-
scriptions, we also evaluate word error rate (WER), a metric not
included in the ZRS Challenge. Our best system has WERs of
around 70–80% for speaker-dependent and 80–95% for speaker-
independent settings. Although these are high error rates, never-
theless our results and analysis should provide useful baselines
and guidance for future work in this area.1

2. Related work

Below we first discuss related work on unsupervised representa-
tion learning, followed by unsupervised term discovery (which
we also compare our approach to), and, finally, full-coverage
segmentation and clustering of unlabelled speech.

2.1. Unsupervised frame-level representation learning

Unsupervised representation learning, in this context, involves
finding a frame-level mapping from input features to a new rep-
resentation that makes it easier to discriminate between different
linguistic units (normally subwords or words).

Early studies used bottom-up approaches operating directly
on the acoustics. Zhang and Glass [9] successfully used poste-
riorgram features from an unsupervised GMM universal back-
ground model (UBM) for query-by-example search and term
discovery. Similarly, Chen et al. [10] used posteriorgrams from a
non-parameteric infinite GMM. Approaches using unsupervised
HMMs to perform a bottom-up tokenization of speech include
the successive state-splitting algorithm of Varadarajan et al. [11],
the more traditional iterative re-estimation and unsupervised de-
coding procedure of Siu et al. [2], and the non-parameteric
Bayesian HMM of Lee and Glass [12]. More recently, NNs
have been used for bottom-up representation learning: stacked
autoencoders (AEs), a type of unsupervised deep NN that tries
to reconstruct its input, has been used in several studies [32–34].

The above approaches perform representation learning with-
out regard to longer-spanning word- or phrase-like patterns in
the data. In several recent studies, unsupervised term discovery
(UTD) is used to automatically discover such patterns; these
then serve as weak top-down constraints for subsequent repre-
sentation learning. Jansen et al. showed that such constraints
can be used to train HMMs [35] and GMM-UBMs [36] that
significantly outperform their pure bottom-up counterparts. In
our own work [30], we proposed the correspondence autoen-
coder (cAE): an AE-like deep NN that incorporates top-down
constraints by using aligned frames from discovered words as
input-output pairs. The model significantly outperformed the
top-down GMM-UBM [36] and stacked AEs [32,33] in an intrin-
sic evaluation: isolated word discrimination. Since then, several
researchers have used such weak top-down supervision in train-
ing unsupervised NN-based models [13, 15, 37]. In this paper

1Code for this work is available at https://github.com/kamperh/
bucktsong_segmentalist.
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we show that cAE-learned features also improve performance
of our multi-speaker unsupervised segmentation and clustering
system.

2.2. Unsupervised term discovery

Unsupervised term discovery (UTD) is the task of finding mean-
ingful word- or phrase-like patterns in unlabelled speech data.
Most state-of-the-art UTD systems use a variant of dynamic time
warping (DTW), called segmental DTW. This algorithm, devel-
oped by Park and Glass [1], identifies similar sub-sequences
within two vector time series, rather than comparing entire se-
quences as in standard DTW. In most UTD systems, segmental
DTW proposes pairs of matching segments which are then clus-
tered using a graph-based method. Follow-up work has built
on Park and Glass’ original method in various ways, for exam-
ple through improved feature representations [16] or by greatly
improving its efficiency [18].

The baseline provided as part of the lexical discovery track
of the Zero Resource Speech Challenge 2015 (ZRS) [8] is a
UTD system based on the earlier work of [18]. The other UTD
submission to the ZRS by Lyzinski et al. [19] extended the
baseline system using improved graph clustering algorithms.
In our evaluation, we compare to both these systems. Our
approach shares the property of UTD systems that it has no
subword level of representation and operates directly on whole-
word representations. However, instead of representing each
segment as a vector time series with variable duration as in UTD,
we map each potential word segment to a fixed-dimensional
acoustic word embedding; we can then define an acoustic model
in the embedding space and use it to compare segments without
performing DTW alignment. Our system also performs full-
coverage segmentation and clustering, in contrast to UTD, which
segments and clusters only isolated acoustic patterns.

2.3. Full-coverage segmentation and clustering of speech

Early work considered full-coverage word segmentation of tran-
scribed phonemic or phonetic symbol sequences [38–41]. This
laid the foundation for subsequent efforts to develop methods
to entirely segment raw speech into word-like clusters. The
approach at the the 2012 JHU CSLP workshop used symbolic
word segmentation methods on top of automatically discov-
ered subword units, but this pipelined approach gave very poor
performance [7]. More recent efforts attempt to segment raw
speech directly; approaches include using non-negative matrix
factorization [5], using iterative decoding and refinement for
jointly training subword HMMs and a lexicon [20], and using
discrete HMMs to model whole words in terms of discovered
subword units [21]. Below we highlight two studies which have
inspired our work in particular.

In [22], Lee et al. developed a non-parametric hierarchical
Bayesian model for full-coverage speech segmentation. Their
model consists of a bottom subword acoustic modelling layer, a
noisy channel model for capturing pronunciation variability, a
syllable layer, and a highest-level word layer. When applied to
speech from single speakers in the MIT Lecture corpus, most
words with high TF-IDF scores were successfully discovered.
As in their model, we also follow a Bayesian approach, which is
useful for incorporating prior knowledge and for finding sparser
solutions [42]. However, where [22] only considered single-

speaker data, we additionally evaluate on large-vocabulary multi-
speaker data.

Furthermore, in contrast to [20–22], our model operates di-
rectly at the whole-word level instead of having both word and
subword models. By taking this different perspective, our seg-
mental whole-word approach is a complementary contribution
to the field of zero-resource speech processing. The approach
is further motivated by the observation that it is often easier
to identify cross-speaker similarities between words than be-
tween subwords [36], which is why most UTD systems focus on
longer-spanning patterns. There is also evidence that infants are
able to segment whole words from continuous speech while still
learning phonetic contrasts in their native language [43, 44]. A
benefit of the segmental embedding approach we use is that seg-
ments can be compared directly in a fixed-dimensional embed-
ding space, meaning that word discovery can be performed using
standard clustering methods (in our case using a Bayesian GMM
acoustic model). Finally, segmental approaches do not make the
frame-level independence assumptions of most of the models
above; this assumption has long been argued against [45, 46].

The second study we draw from is the ZRS submission of
Räsänen et al. [23], which we use to help scale our approach to
larger vocabularies. Their full-coverage word segmentation sys-
tem relies on an unsupervised method that predicts boundaries
for syllable-like units, and then clusters these units on a per-
speaker basis. Using a bottom-up greedy mapping, reoccurring
syllable clusters are then predicted as words. From here onward
we use syllable to refer to the syllable-like units detected in the
first step of their approach.

In our model, we incorporate the syllable boundary detec-
tion method of [23] (the first component of their system) as a
presegmentation method to eliminate unlikely word boundaries.
Both human infants [47] and adults [48] use syllabic cues for
word segmentation, and using such a bottom-up unsupervised
syllabifier can therefore be seen as one way to incorporate prior
knowledge of the speech signal into a zero-resource system [49].

3. Large-vocabulary segmental Bayesian model

In the following we describe our large-vocabulary system in de-
tail, starting with a high-level overview of the model, illustrated
in Figure 1.

The model takes as input raw speech (bottom) and converts
it to frame-level acoustic features using a sliding window feed-
ing into the feature extracting function fa. The sequence of
frame-level vectors (e.g. MFCCs or cAE features) are denoted
as y1:M = y1,y2, . . . ,yM . Suppose we have a hypothesis for
where word boundaries occur in this stream of features (verti-
cal black lines, bottom of figure). Each word2 segment is then
mapped to to an acoustic word embedding (coloured horizontal
vectors in the figure) in a fixed-dimensional space RD; this is
done using the embedding function fe, which takes a sequence
of frame-level features as input and outputs a single embedding
vector xi ∈ RD. Ideally, embeddings of different instances
of the same word type should lie close together in this space.
The different hypothesized word types are then modelled using
a whole-word acoustic model: a GMM with Bayesian priors

2Throughout we use the term word to refer to a segment of speech that might
in reality correspond to a true word, partial word, phrase or noise, depending on
what the system discovers. A more accurate description would be pseudo term,
but we use word instead to match usage in earlier work [1, 29, 50].
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Figure 1: The large-vocabulary segmental Bayesian model. Dashed lines indicate where word boundaries are allowed according to syllable
boundary detection. Function fa is a frame-level feature extractor, while fe maps a variable number of frames to a single embedding vector.

in the D-dimensional embedding space (top of figure). Effec-
tively, if word boundaries are known, this is simply a clustering
model, with every cluster (mixture component) of the GMM
corresponding to a discovered word type.

Initially, however, we do not know where words start and end
in the stream of features. But if we have a GMM acoustic model,
we can use this model to segment an utterance by choosing word
boundaries that yield segments (acoustic word embeddings) that
have high probability under the acoustic model. Our full system
therefore initializes word boundaries at random, extracts word
embeddings, clusters them using the Bayesian GMM, and then
iteratively re-analyzes each utterance (jointly re-segmenting it
and re-clustering the segments) based on the current acoustic
model. The result is a complete segmentation of the input speech
and a prediction of the component to which every word segment
belongs. The model is implemented as a single blocked Gibbs
sampler, and exact details are given next.

3.1. Segmental Bayesian modelling

Given the embedded word vectors X = {xi}Ni=1 from the cur-
rent segmentation hypothesis, the acoustic model needs to assign
each acoustic word embedding xi to one of K clusters, with
each cluster corresponding to a hypothesized word type. We use
a Bayesian GMM as acoustic model, with a conjugate Dirich-
let prior over its mixture weights π and a conjugate diagonal-
covariance Gaussian prior over its component means {µk}Kk=1,
which allows us to integrate out these parameters. The model,
illustrated in Figure 2, is formally defined as:

π ∼ Dir (a/K1) (1)
zi ∼ π (2)

µk ∼ N (µ0, σ
2
0I) (3)

xi ∼ N (µzi , σ
2I) (4)

Latent variable zi indicates the component to which xi is as-
signed. All K components share the same fixed covariance
matrix σ2I. The hyperparameters of the mixture components
are denoted together as β = (µ0, σ

2
0 , σ

2). These hyperparam-
eters could potentially be learned themselves, but here we set
them by hand based on previous studies, as described in Sec-
tion 4.3.

xi

zi

πk

K

K

N

µ0, σ
2
0

µk

σ2

a

Figure 2: The graphical model of the Bayesian Gaussian mixture
model with fixed spherical covariance used as acoustic model.

Given X , we infer the component assignments z =
(z1, z2, . . . , zN ) using a collapsed Gibbs sampler [51]. This
is done in turn for each zi conditioned on all the other current
component assignments [28]:

P (zi = k|z\i,X ; a,β) ∝ P (zi = k|z\i; a)p(xi|Xk\i;β) (5)

where z\i is all latent component assignments excluding zi and
Xk\i is the set of embedding vectors assigned to component k
apart from xi. The first term in (5) can be calculated as:

P (zi = k|z\i; a) =
Nk\i + a/K

N + a− 1
(6)

where Nk\i is the number of embedding vectors from mix-
ture component k without taking xi into account [52, p. 843].
This term can be interpreted as a discounted unigram language
modelling probability. The term p(xi|Xk\i;β) in (5) is the pos-
terior predictive of xi, which (because of the conjugate prior)
is a spherical covariance Gaussian distribution with analytic
expressions for its mean and covariance parameters [53]; these
expressions are given in Appendix A. Intuitively, component
assignment sampling in (5) is therefore based on a combination
of language model and acoustic scores.

Above we described clustering given the current segmenta-
tion. But segmentation and clustering are performed jointly: for
the utterance under consideration, a segmentation is sampled
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Algorithm 1: Gibbs sampler of the segmental Bayesian model.
1: Choose an initial segmentation (e.g. random).
2: for j = 1 to J do . Gibbs sampling iterations
3: for i = randperm(1 to S) do . Select utterance si
4: Remove embeddings X (si) from acoustic model.
5: Resample word boundaries for si, yielding new X (si)
6: for embedding xi in newly sampled X (si) do
7: Sample zi for embedding xi using (5).
8: end for
9: end for

10: end for

using the current acoustic model (marginalizing over cluster
assignments for each potential segment), and clusters are then
resampled for the newly created segments. Pseudo-code for
the blocked Gibbs sampler that implements this algorithm is
given in Algorithm 1. The acoustic data is denoted as {si}Si=1,
where every utterance si consists of acoustic frames y1:Mi

, and
X (si) denotes the embedding vectors under the current segmen-
tation for utterance si. In Algorithm 1, utterance si is selected
according to a random permutation of all utterances; the embed-
dings from the current segmentation X (si) are removed from
the Bayesian GMM; a new segmentation is sampled; and finally
the embeddings from this new segmentation are added back into
the Bayesian GMM. Line 5 uses the forward filtering backward
sampling dynamic programming algorithm [54] to sample the
new embeddings; details of this step are given in Appendix B.

3.2. Unsupervised syllable boundary detection

Without any constraints, the input at the bottom of Figure 1
could be segmented into any number of possible words using
a huge number of possible segmentations. In [28], potential
word segments were therefore required to be between 200 ms
and 1 s in duration, and word boundaries were only considered
at 20 ms intervals. This still results in a very large number of
possible segments. Here we instead use a syllable boundary
detection method to eliminate unlikely word boundaries, with
word candidates spanning a maximum of six syllables. On
the waveform in Figure 1, solid and dashed lines are used to
indicate the only positions where boundaries are considered
during sampling, as determined by the syllabification method.

Räsänen et al. [23] evaluated several syllable boundary de-
tection algorithms, and we use the best of these. First the enve-
lope of the raw waveform is calculated by downsampling the
rectified signal and applying a low-pass filter. Inspired by neu-
ropsychological studies which found that neural oscillations in
the auditory cortex occur at frequencies similar to that of the
syllabic rhythm in speech, the calculated envelope is used to
drive a discrete time oscillation system with a centre frequency
of typical syllabic rhythm. This discrete time system is used
to mathematically model the damped harmonic oscillations in
the auditory system, which is hypothesized to match syllabic
rhythm. Minima in the oscillator’s amplitude give the predicted
syllable boundaries. In this work, we use the syllabification code
kindly provided by the authors of [23] without any modification
and with the default parameter settings.

3.3. Acoustic word embeddings and unsupervised represen-
tation learning

A simple and fast approach to obtain acoustic word embeddings
is to uniformly downsample so that any segment is represented
by the same fixed number of vectors [29,55]. A similar approach
is to divide a segment into a fixed number of intervals and
average the frames in each interval [23,56]. The downsampled or
averaged frames are then flattened to obtain a single fixed-length
vector. Although these very simple approaches are less accurate
at word discrimination than the approach used before in [28],
they have been effectively used in several studies, including [23],
and are computationally much more efficient. Here we use
downsampling as our acoustic word embedding function fe in
Figure 1; we keep ten equally-spaced vectors from a segment,
and use a Fourier-based method for smoothing to deal with cases
where segments are not exactly divisible [29].

Figure 1 shows that fe takes as input a sequence of frame-
level features from the feature extracting function fa. One
option for fa is to simply use MFCCs. As an alternative, we
incorporate unsupervised representation learning (Section 2.1)
into our approach by using the cAE as a feature extractor. Com-
plete details of the cAE are given in [30], but we briefly outline
the training procedure here. The UTD system of [18] is used to
discover word pairs which serve as weak top-down supervision.
The cAE operates at the frame level, so the word-level con-
straints are converted to frame-level constraints by aligning each
word pair using DTW. Taken together across all discovered pairs,
this results in a set of F frame-level pairs

{(
yi,a,yi,b

)}F
i=1

.
Here, each frame is a single MFCC vector. For every pair
(ya,yb), ya is presented as input to the cAE while yb is taken
as output, and vice versa. The cAE consists of several non-
linear layers which are initialized by pretraining the network
as a standard autoencoder. The cAE is then tasked with recon-
structing yb from ya, using the loss ||yb − ya||2. To use the
trained network as a feature extractor fa, the activations in one
of its middle layers are taken as the new feature representation.

4. Experiments

4.1. Experimental setup

We use three datasets, summarized in Table 1. The first two are
disjoint subsets extracted from the Buckeye corpus of conversa-
tional English [57], while the third is a portion of the Xitsonga
section of the NCHLT corpus of languages spoken in South
Africa [31]. Xitsonga is a Bantu language spoken in southern
Africa; although it is considered under-resourced, more than
five million people use it as their first language.3

3http://www.ethnologue.com/language/tso

Table 1: Statistics for the datasets used here. Sets have an equal number
of female and male speakers. The last column is an average.

Dataset Duration
(hours)

No. of
speakers

Word
tokens

Word
types

Types
per spk.

English1 6.0 12 89 681 5129 1104
English2 5.0 12 69 543 4538 966
Xitsonga 2.5 24 19 848 2288 333

5

http://www.ethnologue.com/language/tso


The two sets extracted from Buckeye, referred to as English1
and English2, respectively contain six and five hours of speech,
each from twelve speakers (six female and six male). The Xit-
songa dataset consists of 2.5 hours of speech from 24 speakers
(twelve female, twelve male). English2 and the Xitsonga data
were used as test sets in the ZRS challenge, so we can compare
our system to others using the same data and evaluation frame-
work [8]. English1 was extracted for development purposes
from a disjoint portion of Buckeye to match the distribution of
speakers in English2. For all three sets, speech activity regions
are taken from forced alignments of the data, as was done in the
ZRS. From Table 1, the average duration of a word in an English
set is around 250 ms, while for Xitsonga it is about 450 ms.

Our model is unsupervised, which means that the concepts
of training and test data become blurred. We run our model on
all sets separately—in each case, unsupervised modelling and
evaluation is performed on the same set. English1 is the only set
used for any development (specifically for setting hyperparam-
eters) in any of the experiments; both English2 and Xitsonga
are treated as unseen final test sets. This allows us to see how
hyperparameters generalize within language on data of similar
size, as well as across language on a corpus with very different
characteristics.

4.2. Evaluation

The evaluation of zero-resource systems that segment and cluster
speech is a research problem in itself [58]. We use a range of
metrics that have been proposed before, all performing some
mapping from the discovered structures to ground truth forced
alignments of the data, as illustrated in Figure 3.

Average cluster purity first aligns every discovered token to
the ground truth word token with which it overlaps most. In
Figure 3 the token assigned to cluster 931 would be mapped
to the true word ‘yeah’, and the 477-token mapped to ‘mean’.
Every discovered word type (cluster) is then mapped to the most
common ground truth word type in that cluster. E.g. if most of
the other tokens in cluster 931 are also labelled as ‘yeah’, then
cluster 931 would be labelled as ‘yeah’. Average purity is then
defined as the total proportion of correctly mapped tokens in all
clusters. For this metric, more than one cluster may be mapped
to a single ground truth type (i.e. many-to-one) [5].

Unsupervised word error rate (WER/WERm) uses a sim-
ilar word-level mapping and then aligns the mapped decoded
output from a system to the ground truth transcriptions [20, 21].
Based on this alignment we calculate WER = S+D+I

N , with

y ae ay m iy n

yeah i mean

Cluster 931 Cluster 477

Word-level

Phoneme-level

Cluster-level

Ground truth alignment

Unsupervised prediction

Figure 3: Illustration of the mapping of clusters to true labels for
evaluation. Ground truth alignments are shown at the top, with actual
output from speaker-dependent BayesSegMinDur-cAE at the bottom.

S the number of substitutions, D deletions, I insertions, and
N the tokens in the ground truth. The cluster mapping can be
done in one of two ways: many-to-one, where more than one
cluster can be assigned the same word label (as in purity), or
using a greedy one-to-one mapping, where at most one cluster
is mapped to a ground truth word type. The latter, which we
denote simply as WER, might leave some cluster unassigned
and these are counted as errors [28]. For the former, denoted as
WERm, all clusters are labelled. Depending on the downstream
speech task, it might be acceptable to have multiple clusters that
correspond to the same true word; WER penalizes such clusters,
while WERm does not. WER is a useful metric since it is easily
interpretable and well-known in the speech community.

Normalized edit distance (NED) is the first of the ZRS met-
rics (the rest follow). These metrics use a phoneme-level map-
ping: each discovered token is mapped to the sequence of ground
truth phonemes of which at least 50% or 30 ms are covered by
the discovered segment, i.e. if a phoneme overlaps with either
30 ms or 50% of its duration with the discovered segment, it
becomes part of the phoneme sequence to which that segment is
mapped [8, 58]. In Figure 3, the 931-token would be mapped to
/y ae/ and the 477-token to /ay m iy n/. For a pair of discovered
segments, the edit distance between the two phoneme strings is
divided by the maximum of the length of the two strings. This is
averaged over all pairs predicted to be of the same type (cluster),
to obtain the final NED score. If all segments in each cluster
have the same phoneme string, then NED = 0, while if all
phonemes are different, NED = 1. NED is useful in that it does
not make the assumptions that the discovered segments need to
correspond to true words (as in cluster purity and WER), and it
only considers the patterns returned by a system (so it does not
require full coverage, as WER does). As an example, if a cluster
contains /m iy/ from a realization of the word ‘meaningful’ and
a token /m iy n/ from the true word ‘mean’, then NED would be
1/3 for this two-token cluster.

Word boundary precision, recall, F -score are calculated
by comparing word boundary positions proposed by a system to
those from forced alignments of the data, falling within some
tolerance. A tolerance of 20 ms is mostly used [22], but for
the ZRS the tolerance is 30 ms or 50% of a phoneme (to match
the mapping). In Figure 3 the detected boundary (dashed line)
would be considered correct if it is within the tolerance from the
true word boundary between ‘yeah’ and ‘i’.

Word token precision, recall, F -score compare how accu-
rately proposed word tokens match ground truth word tokens in
the data. In contrast to the word boundary scores, both bound-
aries of a predicted word token need to be correct. In Figure 3,
the system would receive credit for the 931-token since it is
mapped to /y ae/ and therefore match the ground truth word
token ‘yeah’. However, the system would be penalized for
the 477-token (mapped to /ay m iy n/) since it fails to predict
word tokens corresponding to /ay/ and /m iy n/ (the ground truth
words ‘i’ and ‘mean’). Both the word boundary and word token
metrics give a measure of how accurately a system is segmenting
its input into word-like units.

Word type precision, recall, F -score compare the set of
distinct phoneme mappings from the tokens returned by a system
to the set of true word types in the ground truth alignments. If
any discovered word token maps to a phoneme sequence that
is also found as a word in the ground truth vocabulary, the
system is credited for a correct discovery of that word type. For
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example if the type /y ae/ (as in ‘yeah’) occurs in the ground
truth alignment, the system needs to return at least one token
that is mapped to /y ae/.

We evaluate our model in both speaker-dependent and
speaker-independent settings. Multiple speakers make it more
difficult to discover accurate clusters: non-matching linguistic
units might be more similar within-speaker than matching units
across speakers. For the speaker-dependent case, the model
is run and scores are computed on each speaker individually,
then performance is averaged over speakers. In the speaker-
independent case, the system is run and scores computed over
the entire multi-speaker dataset at once. This typically results in
worse purity, NED and WERm scores since the task is more diffi-
cult and clusters are noisier. WER is affected even more severely
due to the one-to-one mapping that it uses; if there are two per-
fectly pure clusters that contain tokens from the same true word,
but the two clusters are also perfectly speaker-dependent, then
only one of these clusters would be mapped to the true word type
and the other would be counted as errors. Despite the adverse
effect on these metrics, it is of practical importance to evaluate
a zero-resource system in the speaker-independent setting.

4.3. Model development and hyperparameters

Most model hyperparameters are set according to previous work
(as referenced below). Any changes are based exclusively on
performance on English1.

Training parameters for the cAE (Section 3.3) are based
on [14, 30]. The model is pretrained as a standard autoencoder
on all data (in a particular set) for 5 epochs using minibatch
stochastic gradient descent with a batch size of 2048 and a fixed
learning rate of 2 · 10−3. Subsequent correspondence training
is performed for 120 epochs using a learning rate of 32 · 10−3.
Each pair is presented in both directions as input and output.
Pairs are extracted using the UTD system of [18]: for English1,
14 494 word pairs are discovered; for English2, 10 769 pairs;
and for Xitsonga, 6979. The cAE is trained on each of these
sets separately. In all cases, the model consists of nine hidden
layers of 100 units each, except for the eighth layer which is a
bottleneck layer of 13 units. We use tanh as non-linearity. The
position of the bottleneck layer is based on intrinsic evaluation
on English1. Although it is common in NN speech systems
to use nine or eleven sliding frames as input, we use single-
frame cepstral mean and variance normalized MFCCs with first
and second order derivatives (39-dimensional), as also done
in [14, 30]. For feature extraction, the cAE is cut at the bottle-
neck layer, resulting in 13-dimensional output (chosen to match
the dimensionality of the static MFCCs). For both the MFCC
and cAE acoustic word embeddings, we downsample a segment
to ten frames, resulting in 130-dimensional embeddings. As
in [28, 59, 60], embeddings are normalized to have unit length.

For the acoustic model (Section 3.1) we use the following
hyperparameters, as in [28, 59, 60]: all-zero vector for µ0, σ2

0 =
σ2/κ0, κ0 = 0.05 and a = 1. For MFCC embeddings we
use σ2 = 1 · 10−3 for the fixed shared spherical covariance
matrix, while for cAE embeddings we use σ2 = 1 · 10−4. This
was based on speaker-dependent English1 performance. We
found that σ2 is one of the parameters most sensitive to the input
representation and often requires tuning; generally, however, it
is robust if it is chosen small enough (in the ranges used here).

We use the oscillator-based syllabification system of Räsänen

et al. [23] without modification. Word candidates are limited
to span a maximum of six syllables. One difficulty is to de-
cide beforehand how many potential word clusters (the number
of components K in the acoustic model) we need. Here we
follow the same approach as in [23]: we choose K as a pro-
portion of the number of discovered syllable tokens. For the
speaker-dependent settings, we set K as 20% of the number
of syllables, based on English1 performance. On average, this
amounts to K = 1549 on English1, K = 1195 on English2,
and K = 298 on Xitsonga. Compared to the average number
of word types per speaker shown in Table 1, these numbers are
higher for the English sets and slightly lower for Xitsonga. For
speaker-independent models, we use 5% of the syllable tokens,
amounting to K = 4647 on English1, K = 3584 on English2,
and K = 1789 on Xitsonga. These are lower than the true
number of total word types shown in Table 1. On English1,
speaker-independent performance did not improve when using
a larger K and inference was much slower.

To improve sampler convergence, we use simulated anneal-
ing [28]. We found that convergence is improved by first running
the sampler in Algorithm 1 without sampling boundaries. In all
experiments we do this for 15 iterations. Subsequently, the com-
plete sampler is run for J = 15 Gibbs sampling iterations with
3 annealing steps. Word boundaries are initialized randomly by
setting boundaries at allowed locations with a 0.25 probability.

Given the common setup above, we consider three variants of
our approach:

BayesSeg is the most general segmental Bayesian model. In
this model, a word segment can be of any duration, as long as it
spans less than six syllables.

BayesSegMinDur is the same as BayesSeg, but requires
word candidates to be at least 250 ms in duration; on English1,
this improved performance on several metrics. Such a minimum
duration constraint is also used in most UTD systems [1, 18].

SyllableBayesClust clusters the discovered syllable tokens
using the Bayesian GMM, but does not sample word boundaries.
It can be seen as a baseline for the two models above, where
segmentation is turned off and the detected syllable boundaries
are set as initial (and permanent) word boundaries. All word
candidates therefore span a single syllable in this model.

4.4. Results: Word error rates and analysis

Speaker-dependent models

Table 2 shows one-to-one and many-to-one WERs for the differ-
ent speaker-dependent models on the three datasets. The trends
in WER using one-to-one and many-to-one mappings are similar,
with the absolute performance of the latter consistently better
by around 10% to 20% absolute. The performance on Xitsonga
varies much more dramatically than on the English datasets,
with WER ranging from around 140% to 75% and WERm from
135% to 69%.4 Table 1 shows that the characteristics of the
Xitsonga data are quite different from the English sets. For the
speaker-dependent case here, much less data is available per
Xitsonga speaker (just over six minutes on average) than for an
English speaker (more than ten minutes), which might (at least
partially) explain why error rates vary much more dramatically
on Xitsonga. Moreover, there is a much higher proportion of

4From its definition, WER is more than 100% if there are more substitutions,
deletions and insertions than ground truth tokens.
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Table 2: Performance on the three datasets for speaker-dependent models.

One-to-one WER (%) Many-to-one WERm (%)

Model Embeds. English1 English2 Xitsonga English1 English2 Xitsonga

SyllableBayesClust MFCC 93.3 94.1 140.3 72.4 76.1 134.5
BayesSeg MFCC 89.2 88.8 116.2 68.3 70.5 109.5
BayesSegMinDur MFCC 83.7 82.8 78.9 67.6 68.3 71.7
BayesSeg cAE 89.3 89.3 107.9 70.0 73.0 100.5
BayesSegMinDur cAE 85.2 84.1 75.9 70.6 71.2 68.8

multisyllabic words in Xitsonga [23], as reflected in the average
duration of words which is almost twice as long in the Xitsonga
than in the English data (Section 4.1).

Comparing the results for the three systems using MFCC
features indicates that, on all three datasets, allowing the system
to infer word boundaries across multiple syllables (BayesSeg)
yields better performance than treating each syllable as a word
candidate (SyllableBayesClust). Incorporating a minimum dura-
tion constraint (BayesSegMinDur) improves performance fur-
ther. The relative differences between these systems are much
more pronounced in Xitsonga, presumably due to the higher
proportion of multisyllabic words. Despite the high error rates,
this analysis nevertheless shows the benefits of top-down seg-
mentation and minimum duration constraints; using bootstrap
confidence interval estimation [61]5, these improvements of
BayesSeg over SyllableBayesClust and of BayesSegMinDur
over BayesSeg were found to be statistically significant at the
99.9% level for all three datasets and for both the WER and
WERm metrics.

Table 2 also shows that in most cases the cAE features per-
form similarly to MFCC features in these speaker-dependent
systems, although there is a large improvement in Xitsonga for
the BayesSeg system when switching to cAE features (from
116.2% to 107.9% in WER and from 109.5% to 100.5% in
WERm, again significant at the 99.9% level).

To get a better insight into the types of errors that the models
make, Tables 3 and 4 give a breakdown of word boundary de-
tection scores, individual error rates, and average cluster purity
on English2 and Xitsonga, respectively. Bootstrap estimates
of two standard deviations around each WER are also given,
indicating the range in which the true WER lie with 95% prob-
ability [61]. A word boundary tolerance of 20 ms is used [22],
with a greedy one-to-one mapping for calculating error rates.
SyllableBayesClust gives an upper-bound for word boundary
recall since every syllable boundary is set as a word boundary.
The low recall (28.9% and 24.8%) could potentially be improved
by using a better syllabification method, but we leave such an
investigation for future work.

Table 3 shows that on English2, the MFCC-based BayesSeg
and BayesSegMinDur models under-segment compared to Syl-
lableBayesClust, causing systematically poorer word boundary
recall and F -scores and an increase in deletion errors. How-
ever, this is accompanied by large reductions in substitution

5Sampling with replacement at the utterance level, B = 1000 bootstrap
samples of a dataset are generated. For a single system, WER can then be
calculated for each of these samples in order to estimate the spread of the WER
around its mean. To compare two systems, the difference in WER is calculated
when evaluating both systems on each of the samples, giving an estimate of the
probability of improvement of one system over another. See [61] for complete
details.

and insertion error rates, resulting in overall WER improve-
ments and more accurate clusters when boundaries are inferred
(45.1% purity, BayesSeg-MFCC) rather than using fixed syl-
lable boundaries (42%, SyllableBayesClust), with further im-
provements when not allowing short word candidates (56%,
BayesSegMinDur-MFCC).

In contrast to English2, Table 4 shows that on Xitsonga, Syl-
lableBayesClust heavily over-segments causing a large number
of insertion errors. This is not surprising since every syllable
is treated as a word, while most of the true Xitsonga words are
multisyllabic. At the cost of more deletions and poorer word
boundary detection, BayesSeg-MFCC and BayesSegMinDur-
MFCC systematically reduces substitution and insertion errors,
again resulting in better overall WER and average cluster purity.
Where the cAE-based models on English2 performed more-
or-less on par with their MFCC counterparts, on Xitsonga the
cAE embeddings yield large improvements on some metrics: by
switching to cAE embeddings, the WER of BayesSeg improves
by 8.3% absolute, while average cluster purity is 13.6% better
for BayesSegMinDur.

Speaker-independent models

Table 5 gives the performance of different speaker-independent
models. Compared to the speaker-dependent results of Table 2,
performance is worse for all models and datasets. Dealing with
multiple speakers is clearly challenging for these unsupervised
systems. Nevertheless, the analysis still allows us to compare the
different variants of our approach. As in the speaker-dependent
case, BayesSegMinDur is the best performing MFCC system,
followed by BayesSeg, and SyllableBayesClust performs worst;
again these differences are significant at the 99.9% level. In
the speaker-dependent experiments, some MFCC-based models
slightly outperformed their cAE counterparts. Here, however,
the WERs of cAE models are identical or improved in all cases;
for Xitsonga in particular, improvements are obtained by using
cAE features in both BayesSeg (improvement of 26.3% abso-
lute in WER) and BayesSegMinDur (7.4%). The cAE-based
BayesSegMinDur model is the only speaker-independent Xit-
songa model with a WER less than 100%. Again, by allowing
more than one cluster to be mapped the same true word type,
WERm scores are lower than WER. On English, the cAE-based
models do not yield better WERm than their MFCC counterparts,
probably because WERm does not penalize for creating sepa-
rate speaker- or gender-specific clusters (these would just get
mapped to the same word for scoring). Nevertheless, the cAE
features still yield large improvements in Xitsonga. Word bound-
ary scores and substitution, deletion and insertion errors (not
shown) follow a similar pattern to that of the speaker-dependent
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Table 3: A breakdown of the errors on English2 for the speaker-dependent models in Table 2. The word boundary detection tolerance is 20 ms.
The greedy one-to-one cluster mapping is used for error rate computations, and bootstrap estimates of two standard deviations (95% of values)
around each WER are shown.

Word boundary (%) Errors (%) Purity

Model Embeds. Prec. Rec. F Sub. Del. Ins. WER Avg. (%)

SyllableBayesClust MFCC 27.7 28.9 28.3 63.8 13.6 16.7 94.1± 0.4 42.0
BayesSeg MFCC 29.3 26.3 27.7 59.3 18.3 11.2 88.8± 0.4 45.1
BayesSegMinDur MFCC 31.5 12.4 17.8 38.3 43.2 1.3 82.8± 0.3 56.0
BayesSeg cAE 29.1 22.8 25.6 55.7 24.3 9.3 89.3± 0.3 43.9
BayesSegMinDur cAE 30.9 10.0 15.1 35.4 47.7 1.0 84.1± 0.3 55.5

Table 4: A breakdown of the errors on Xitsonga for the speaker-dependent models in Table 2. The word boundary detection tolerance is 20 ms.
The greedy one-to-one cluster mapping is used for error rate computations, and bootstrap estimates of two standard deviations (95% of values)
around each WER are shown.

Word boundary (%) Errors (%) Purity

Model Embeds. Prec. Rec. F Sub. Del. Ins. WER Avg. (%)

SyllableBayesClust MFCC 12.4 24.8 16.5 55.8 2.1 82.4 140.3± 1.5 33.1
BayesSeg MFCC 12.4 20.3 15.4 53.5 6.0 56.6 116.2± 1.3 36.8
BayesSegMinDur MFCC 11.8 10.8 11.3 43.2 21.2 14.5 78.9± 0.7 50.1
BayesSeg cAE 12.4 18.3 14.8 50.2 9.7 47.9 107.9± 1.2 40.0
BayesSegMinDur cAE 11.5 8.9 10.0 38.3 27.9 9.7 75.9± 0.7 63.7

models. Bootstrap estimates of the spread around the individual
WERs were in the same order as those in Tables 3 and 4; the
SyllableBayesClust Xitsonga system has the biggest spread with
the true WER lying in 167.2± 1.6% with 95% probability.

To better illustrate the benefits of unsupervised representation
learning, Table 6 shows general purity measures for the speaker-
independent MFCC- and cAE-based BayesSegMinDur models.
Average cluster purity is as defined before. Average speaker
purity is similarly defined, but instead of considering the mapped
ground truth label of a segmented token, it considers the speaker
who produced it: speaker purity is 100% if every cluster contains
tokens from a single speaker, while it is 1/12 = 8.3% if all
clusters are completely speaker balanced for the English sets and
1/24 = 4.2% for Xitsonga. Average gender purity is similarly
defined: it is 100% if every cluster contains tokens from a single
gender, while 1/2 = 50% indicates a perfectly gender-balanced
cluster. Ideally, a speaker-independent system should have high
cluster purity and low speaker and gender purities. Table 6
indicates that for all three datasets, cAE-based embeddings
are less speaker and gender discriminative, and have higher or
similar cluster purity compared to the MFCC-based embeddings.

Qualitative analysis and summary

Qualitative analysis involved concatenating and listening to the
audio from the tokens in some of the biggest clusters of the best
speaker-dependent and -independent models. Apart from the
trends mentioned already, others also became immediately ap-
parent. Despite the low average cluster purity ranging from 30%
to 60% in the analyses above, we found that most of the clusters
are acoustically very pure: often tokens correspond to the same
syllable or partial word, but occur within different ground truth
words. For example, a cluster with the word ‘day’ had the cor-
responding portions from ‘daycare’ and ‘Tuesday’. These are

marked as errors for cluster purity and WER calculations. In the
next section, we use NED as metric, which does not penalize
such partial word matches. The biggest clusters often correspond
to filler-words. As an example, speaker S38 from English1 had
several clusters corresponding to ‘yeah’ and ‘you know’. But the
BayesSegMinDur-MFCC model applied to S38 also discovered
pure clusters corresponding to ‘different’, ‘people’ and ‘five’.
For the speaker-independent BayesSegMinDur-cAE system, the
biggest clusters consisted of instances of ‘um’, ‘uh’, ‘oh’, ‘so’
and ‘yeah’.

In summary, the high error rates reported above indicate that
significant effort is still required in order to achieve reasonable
performance with such zero-resource methods. A comparison of
Tables 2 and 5 shows that dealing with multiple speakers is par-
ticularly challenging—recent zero-resource work has started to
investigate this aspect specifically [62]. Nevertheless, the above
analysis allowed us to compare and draw conclusions regarding
the different variants of our approach. Specifically, although
under-segmentation occurs in the BayesSeg and BayesSegMin-
Dur models, these models yield more accurate clusters and
thereby improve overall purity and WER. In most cases, cAE
embeddings either yield similar or improved performance com-
pared to MFCCs. In particular in the speaker-independent case,
cAE-based models discover clusters that are more speaker- and
gender-independent. This illustrates the benefit of incorporat-
ing weak top-down supervision for unsupervised representation
learning within a zero-resource system.

4.5. Results: Comparison to other systems

We now compare our approach to others using the evaluation
framework provided as part of the ZRS challenge [8]. We com-
pare our approach to three systems:

ZRSBaselineUTD is the UTD system used as official base-
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Table 5: Performance on the three datasets for speaker-independent models.

One-to-one WER (%) Many-to-one WERm (%)

Model Embeds. English1 English2 Xitsonga English1 English2 Xitsonga

SyllableBayesClust MFCC 105.1 106.5 167.2 86.4 89.6 149.2
BayesSeg MFCC 101.7 102.1 148.3 83.4 85.6 131.3
BayesSegMinDur MFCC 93.9 93.7 102.4 81.4 82.0 89.8
BayesSeg cAE 99.0 99.9 122.0 82.6 85.4 104.7
BayesSegMinDur cAE 94.0 93.7 95.0 82.4 83.3 81.1

Table 6: Average speaker-independent cluster (clust.), speaker (spk.),
and gender (gndr) purity for BayesSegMinDur on the three datasets.

English1 (%) English2 (%) Xitsonga (%)

Embeds. Clust. Spk. Gndr Clust. Spk. Gndr Clust. Spk. Gndr

MFCC 30.3 56.7 86.8 29.9 55.9 87.6 24.5 43.1 87.1
cAE 31.5 37.9 77.0 30.0 35.7 73.8 33.1 29.3 76.6

line in the challenge [8] (see Section 2.2).
UTDGraphCC is the best UTD system of [19], employing

a connected component graph clustering algorithm to group
discovered segments (also Section 2.2).

SyllableSegOsc+ uses oscillator-based syllabification fol-
lowed by speaker-dependent clustering and word discovery [23]
(Section 2.3). We add the superscript + since, after publication
of [23], Räsänen et al. further refined their syllable boundary
detection method [63]. We use this updated version for preseg-
mentation in our system. The authors of [23] kindly regenerated
their full ZRS results for comparison here. The original results
are included in Appendix C.

For our approach, we focus on systems that performed best on
English1 in the previous section: for the speaker-dependent set-
ting we use the MFCC-based BayesSegMinDur system, while
for the speaker-independent setting we use the cAE-based
BayesSegMinDur model. The performance of all our system
variants using all of the ZRS metrics are given in Appendix C.

Figure 4 shows the NED scores of the different systems on En-
glish2 and Xitsonga. ZRSBaselineUTD yields the best NED on
both languages, with UTDGraphCC also performing well. UTD
systems like these explicitly aim to discover high-precision clus-
ters of isolated segments, but do not cover all the data. They are
therefore tailored to NED, which only evaluates the patterns dis-
covered by the method and does not evaluate recall on the rest of
the data. In contrast, SyllableSegOsc+ and our own systems per-
form full-coverage segmentation. Of these, our systems achieve
better NED than SyllableSegOsc+ on both languages, indicating
that the discovered clusters in our approach are more consistent.
Even when running our system in a speaker-independent setting
(BayesSegMinDur-cAE in the figure), our approach outperforms
the speaker-dependent SyllableSegOsc+.

Figures 5 and 6 show the token, type and boundary F -scores
on the two languages. For comparison, word token F -scores
of less than 4% were achieved at the 2012 JHU CSLP work-
shop, although a different dataset was used [7]. Apart from
word type F -score on Xitsonga, our models outperform all
other approaches in the direct comparison here. The UTD sys-
tems struggle on these metrics since the F -scores are based on
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Figure 4: Normalized edit distance (NED) on English2 and Xitsonga.
Lower NED is better. Scores are only computed on the analyzed portion
of data (so the lower-coverage UTD systems have an advantage). SD/SI
indicates that a system is speaker-dependent/speaker-independent.

precision and recall over the entire input. The full-coverage
SyllableSegOsc+ is therefore our strongest competitor in most
cases. The prediction of word candidates from reoccurring clus-
ter sequences in SyllableSegOsc+ is done greedily and bottom-
up, without regard to other word mappings in an utterance. In
contrast, BayesSegMinDur samples word boundaries and cluster
assignments together by taking a whole utterance into account;
it imposes a consistent top-down segmentation, while simulta-
neously adhering to bottom-up syllable boundary detection and
minimum duration constraints. The result is a more accurate
segmentation of the data. Note that in BayesSeg it is easy to in-
corporate additional bottom-up constraints (such as a minimum
duration) and these are considered jointly with segmentation.
In contrast, such a minimum duration constraint would require
additional heuristics in the pure bottom-up approach of [23].

The results in Figures 5 and 6 also indicate that our speaker-
independent system performs on par with the speaker-dependent
system on these metrics; despite less accurate clusters (in terms
of purity, WER and NED), the speaker-independent models still
yields an accurate segmentation of the data, outperforming both
speaker-independent UTD baselines and the speaker-dependent
SyllableSegOsc+.

We conclude that by hypothesizing word boundaries consis-
tently over an utterance rather than taking these decisions in
isolation, our approach yields more accurate clusters (NED) that
correspond better to true words (word type F -score) than the
full-coverage syllable-based approach of [23]. It also segments
the data more accurately (word token and boundary F -scores),
even when applying the model to data from multiple speak-
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Figure 5: Word token, type and boundary F -scores on English2. SD/SI
indicates that a system is speaker-dependent/speaker-independent. The
word boundary detection tolerance is 30 ms or 50% of a phoneme.

ers. However, despite the benefits of our model, the algorithm
of [23] is much simpler in terms of computational complexity
and implementation. Compared to UTD systems which aim
to find high-quality reoccurring patterns but do not cover all
the data, the items in our clusters have a poorer match to each
other (NED), but correspond better to true words on the English
data (word type F -score). On both languages, our full-coverage
method also segments the data better into word-like units (word
boundary and token F -scores) than the UTD systems.

5. Conclusion

We presented a segmental Bayesian model which segments
and clusters conversational speech audio—a first attempt to
evaluate a full-coverage zero-resource system on multi-speaker
large-vocabulary data. The system limits word boundary posi-
tions by using a bottom-up presegmentation method to detect
syllable-like units, and relies on a segmental approach where
word segments are represented as fixed-dimensional acoustic
word embeddings.

Our speaker-dependent system achieves WERs of around 84%
on English and 76% on Xitsonga data, outperforming a purely
bottom-up method that treats each syllable as a word candidate.
Despite much worse speaker-independent performance, here
we achieve improvements by incorporating frame-level features
from an autoencoder-like neural network trained using weak top-
down constraints. This results in clusters that are purer and less
speaker- and gender-specific than when using MFCCs, show-
ing for the first time the benefit of unsupervised representation
learning within a complete zero-resource system.

We compared our approach to state-of-the-art baselines on
both languages. We found that, although the isolated patterns
discovered by UTD are more consistent, the clusters of our full-
coverage approach are better matched to true words, measured
in terms of word token, type and boundary F -scores. We also
found that by proposing a consistent segmentation and cluster-
ing over whole utterances, our approach outperforms a purely
bottom-up syllable-based full-coverage system on these metrics.

The high WERs reported in this study show that there is still
much work to be done in the area of zero-resource speech pro-
cessing. Nevertheless, previous work shows that high-error rate
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Figure 6: Word token, type and boundary F -scores on Xitsonga. SD/SI
indicates that a system is speaker-dependent/speaker-independent. The
word boundary detection tolerance is 30 ms or 50% of a phoneme.

unsupervised systems can still be useful in downstream tasks.
The analysis presented here also provides useful baselines and
guidance for future work. In particular, we show the benefits of
performing consistent top-down segmentation while adhering
to bottom-up constraints, as well as incorporating unsupervised
representation learning. Our own future work will consider
better acoustic word embedding approaches, improving the re-
call of the syllabic presegmentation method, and improving the
overall efficiency of the model.

Acknowledgements

We would like to thank Okko Räsänen and Shreyas Seshadri
for providing the code for their syllable boundary detection
algorithm and for regenerating their ZRS results. We also thank
Roland Thiollière and Maarten Versteegh for providing us the
alignments used in the ZRS challenge. HK was funded by a
Commonwealth Scholarship. This work was supported in part
by a James S. McDonnell Foundation Scholar Award to SG.

References

[1] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in
speech,” IEEE Trans. Audio, Speech, Language Process., vol. 16,
no. 1, pp. 186–197, 2008.

[2] M.-H. Siu, H. Gish, A. Chan, W. Belfield, and S. Lowe, “Unsuper-
vised training of an HMM-based self-organizing unit recognizer
with applications to topic classification and keyword discovery,”
Comput. Speech Lang., vol. 28, no. 1, pp. 210–223, 2014.

[3] M. Dredze, A. Jansen, G. Coppersmith, and K. Church, “NLP on
spoken documents without ASR,” in Proc. EMNLP, 2010.

[4] O. J. Räsänen, “Computational modeling of phonetic and lexical
learning in early language acquisition: Existing models and future
directions,” Speech Commun., vol. 54, pp. 975–997, 2012.

[5] M. Sun and H. Van hamme, “Joint training of non-negative Tucker
decomposition and discrete density hidden Markov models,” Com-
put. Speech Lang., vol. 27, no. 4, pp. 969–988, 2013.

[6] T. Taniguchi, T. Nagai, T. Nakamura, N. Iwahashi, T. Ogata,
and H. Asoh, “Symbol emergence in robotics: A survey,” arXiv
preprint arXiv:1509.08973, 2015.

11



[7] A. Jansen, E. Dupoux, S. J. Goldwater, M. Johnson, S. Khudan-
pur, K. Church, N. Feldman, H. Hermansky, F. Metze, R. Rose,
M. Seltzer, P. Clark, I. McGraw, B. Varadarajan, E. Bennett,
B. Borschinger, J. Chiu, E. Dunbar, A. Fourtassi, D. Harwath,
C.-y. Lee, K. Levin, A. Norouzian, V. Peddinti, R. Richardson,
T. Schatz, and S. Thomas, “A summary of the 2012 JHU CLSP
workshop on zero resource speech technologies and models of
early language acquisition,” in Proc. ICASSP, 2013.

[8] M. Versteegh, R. Thiollière, T. Schatz, X. N. Cao, X. Anguera,
A. Jansen, and E. Dupoux, “The Zero Resource Speech Challenge
2015,” in Proc. Interspeech, 2015.

[9] Y. Zhang and J. R. Glass, “Towards multi-speaker unsupervised
speech pattern discovery,” in Proc. ICASSP, 2010.

[10] H. Chen, C.-C. Leung, L. Xie, B. Ma, and H. Li, “Parallel in-
ference of Dirichlet process Gaussian mixture models for unsu-
pervised acoustic modeling: A feasibility study,” in Proc. Inter-
speech, 2015.

[11] B. Varadarajan, S. Khudanpur, and E. Dupoux, “Unsupervised
learning of acoustic sub-word units,” in Proc. ACL, 2008.

[12] C.-y. Lee and J. R. Glass, “A nonparametric Bayesian approach
to acoustic model discovery,” in Proc. ACL, 2012.

[13] G. Synnaeve, T. Schatz, and E. Dupoux, “Phonetics embedding
learning with side information,” in Proc. SLT, 2014.

[14] D. Renshaw, H. Kamper, A. Jansen, and S. J. Goldwater, “A
comparison of neural network methods for unsupervised repre-
sentation learning on the Zero Resource Speech Challenge,” in
Proc. Interspeech, 2015.

[15] N. Zeghidour, G. Synnaeve, M. Versteegh, and E. Dupoux, “A
deep scattering spectrum-deep Siamese network pipeline for un-
supervised acoustic modeling,” in Proc. ICASSP, 2016.

[16] Y. Zhang, R. Salakhutdinov, H.-A. Chang, and J. R. Glass, “Re-
source configurable spoken query detection using deep Boltzmann
machines,” in Proc. ICASSP, 2012.

[17] K. Levin, A. Jansen, and B. Van Durme, “Segmental acoustic
indexing for zero resource keyword search,” in Proc. ICASSP,
2015.

[18] A. Jansen and B. Van Durme, “Efficient spoken term discovery
using randomized algorithms,” in Proc. ASRU, 2011.

[19] V. Lyzinski, G. Sell, and A. Jansen, “An evaluation of graph
clustering methods for unsupervised term discovery,” in Proc.
Interspeech, 2015.

[20] C.-T. Chung, C.-a. Chan, and L.-s. Lee, “Unsupervised discovery
of linguistic structure including two-level acoustic patterns using
three cascaded stages of iterative optimization,” in Proc. ICASSP,
2013.

[21] O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, “A hierar-
chical system for word discovery exploiting DTW-based initial-
ization,” in Proc. ASRU, 2013.

[22] C.-y. Lee, T. O’Donnell, and J. R. Glass, “Unsupervised lexicon
discovery from acoustic input,” Trans. ACL, vol. 3, pp. 389–403,
2015.

[23] O. J. Räsänen, G. Doyle, and M. C. Frank, “Unsupervised word
discovery from speech using automatic segmentation into syllable-
like units,” in Proc. Interspeech, 2015.

[24] H. Gish, M.-H. Siu, A. Chan, and B. Belfield, “Unsupervised
training of an HMM-based speech recognizer for topic classifica-
tion,” in Proc. Interspeech, 2009.

[25] L. J. Martin, A. Wilkinson, S. S. Miryala, V. Robison, and A. W.
Black, “Utterance classification in speech-to-speech translation
for zero-resource languages in the hospital administration do-
main,” in Proc. ASRU, 2015.

[26] A. Wilkinson, T. Zhao, and A. W. Black, “Deriving phonetic
transcriptions and discovering word segmentations for speech-to-
speech translation in low-resource settings,” in Proc. Interspeech,
2016.

[27] S. H. Shum, D. F. Harwath, N. Dehak, and J. R. Glass, “On the use
of acoustic unit discovery for language recognition,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 24, no. 9, pp. 1665–1676,
2016.

[28] H. Kamper, A. Jansen, and S. J. Goldwater, “Unsupervised word
segmentation and lexicon discovery using acoustic word embed-
dings,” IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 24, no. 4, pp. 669–679, 2016.

[29] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-
dimensional acoustic embeddings of variable-length segments
in low-resource settings,” in Proc. ASRU, 2013.

[30] H. Kamper, M. Elsner, A. Jansen, and S. J. Goldwater, “Un-
supervised neural network based feature extraction using weak
top-down constraints,” in Proc. ICASSP, 2015.

[31] N. J. De Vries, M. H. Davel, J. Badenhorst, W. D. Basson,
F. De Wet, E. Barnard, and A. De Waal, “A smartphone-based
ASR data collection tool for under-resourced languages,” Speech
Commun., vol. 56, pp. 119–131, 2014.

[32] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton,
“On rectified linear units for speech processing,” in Proc. ICASSP,
2013.

[33] L. Badino, C. Canevari, L. Fadiga, and G. Metta, “An auto-
encoder based approach to unsupervised learning of subword
units,” in Proc. ICASSP, 2014.

[34] L. Badino, A. Mereta, and L. Rosasco, “Discovering discrete
subword units with binarized autoencoders and hidden-markov-
model encoders,” in Proc. Interspeech, 2015.

[35] A. Jansen and K. Church, “Towards unsupervised training of
speaker independent acoustic models,” in Proc. Interspeech, 2011.

[36] A. Jansen, S. Thomas, and H. Hermansky, “Weak top-down
constraints for unsupervised acoustic model training,” in Proc.
ICASSP, 2013.

[37] R. Thiollière, E. Dunbar, G. Synnaeve, M. Versteegh, and
E. Dupoux, “A hybrid dynamic time warping-deep neural net-
work architecture for unsupervised acoustic modeling,” in Proc.
Interspeech, 2015.

[38] S. J. Goldwater, T. L. Griffiths, and M. Johnson, “A Bayesian
framework for word segmentation: Exploring the effects of con-
text,” Cognition, vol. 112, no. 1, pp. 21–54, 2009.

[39] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsupervised
word segmentation with nested Pitman-Yor language modeling,”
in Proc. ACL, 2009.

[40] G. Neubig, M. Mimura, S. Mori, and T. Kawahara, “Learning a
language model from continuous speech,” in Proc. Interspeech,
2010.

[41] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj, “Unsu-
pervised word segmentation from noisy input,” in Proc. ASRU,
2013.

[42] S. J. Goldwater and T. L. Griffiths, “A fully Bayesian approach to
unsupervised part-of-speech tagging,” in Proc. ACL, 2007.

[43] H. Bortfeld, J. L. Morgan, R. M. Golinkoff, and K. Rathbun,
“Mommy and me: familiar names help launch babies into speech-
stream segmentation,” Psychol. Sci., vol. 16, no. 4, pp. 298–304,
2005.

[44] N. H. Feldman, T. L. Griffiths, and J. L. Morgan, “Learning
phonetic categories by learning a lexicon,” in Proc. CCSS, 2009.

12



[45] G. Zweig and P. Nguyen, “SCARF: a segmental conditional ran-
dom field toolkit for speech recognition,” in Interspeech, 2010.

[46] D. Gillick, L. Gillick, and S. Wegmann, “Don’t multiply lightly:
Quantifying problems with the acoustic model assumptions in
speech recognition,” in Proc. ASRU, 2011.

[47] P. D. Eimas, “Segmental and syllabic representations in the per-
ception of speech by young infants,” J. Acoust. Soc. Am., vol. 105,
no. 3, pp. 1901–1911, 1999.

[48] J. M. McQueen, “Segmentation of continuous speech using
phonotactics,” J. Memory Lang., vol. 39, no. 1, pp. 21–46, 1998.

[49] M. Versteegh, X. Anguera, A. Jansen, and E. Dupoux, “The
Zero Resource Speech Challenge 2015: Proposed approaches and
results,” in Proc. SLTU, 2016.

[50] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional acous-
tic word embeddings using word-pair side information,” in Proc.
ICASSP, 2016.

[51] P. Resnik and E. Hardisty, “Gibbs sampling for the uninitiated,”
University of Maryland, College Park, MD, Tech. Rep., 2010.

[52] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA: MIT Press, 2012.

[53] ——, “Conjugate Bayesian analysis of the Gaussian distribution,”
2007. [Online]. Available: http://www.cs.ubc.ca/∼murphyk/
mypapers.html

[54] S. L. Scott, “Bayesian methods for hidden Markov models,” J.
Am. Stat. Assoc., vol. 97, no. 457, pp. 337–351, 2002.

[55] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental
neural networks for speech recognition,” in Proc. Interspeech,
2013.

[56] H.-y. Lee and L.-s. Lee, “Enhanced spoken term detection using
support vector machines and weighted pseudo examples,” IEEE
Trans. Audio, Speech, Language Process., vol. 21, no. 6, pp.
1272–1284, 2013.

[57] M. A. Pitt, K. Johnson, E. Hume, S. Kiesling, and W. Raymond,
“The Buckeye corpus of conversational speech: Labeling con-
ventions and a test of transcriber reliability,” Speech Commun.,
vol. 45, no. 1, pp. 89–95, 2005.

[58] B. Ludusan, M. Versteegh, A. Jansen, G. Gravier, X.-N. Cao,
M. Johnson, and E. Dupoux, “Bridging the gap between speech
technology and natural language processing: an evaluation tool-
box for term discovery systems,” in Proc. LREC, 2014.

[59] H. Kamper, A. Jansen, S. King, and S. J. Goldwater, “Un-
supervised lexical clustering of speech segments using fixed-
dimensional acoustic embeddings,” in Proc. SLT, 2014.

[60] H. Kamper, S. J. Goldwater, and A. Jansen, “Fully unsupervised
small-vocabulary speech recognition using a segmental Bayesian
model,” in Proc. Interspeech, 2015.

[61] M. Bisani and H. Ney, “Bootstrap estimates for confidence inter-
vals in ASR performance evaluation,” in Proc. ICASSP, Montreal,
Quebec, Canada, 2004, pp. 409–412.

[62] N. Zeghidour, G. Synnaeve, N. Usunier, and E. Dupoux, “Joint
learning of speaker and phonetic similarities with Siamese net-
works,” in Proc. Interspeech, 2016.

[63] O. J. Räsänen, G. Doyle, and M. C. Frank, “Pre-linguistic rhyth-
mic segmentation of speech into syllabic units,” in submission,
2016.

Appendices

A. Posterior predictive of spherical Gaussian

Because of the conjugate priors with known spherical covari-
ance matrices, the probability density function (PDF) of the
multivariate posterior predictive p(xi|Xk\i;β) in (5) is itself a
spherical covariance Gaussian. This PDF decomposes into the
product of univariate PDFs; for a single dimension xi of vector
xi, the univariate PDF is given by

p(xi|Xk\i) = N (xi|µNk\i , σ
2
Nk\i

+ σ2) (7)

where

σ2
Nk\i

=
σ2σ2

0

Nk\iσ2
0 + σ2

, µNk\i = σ2
Nk\i

(
µ0

σ2
0

+
Nk\ixk\i

σ2

)
(8)

and xk\i is component k’s sample mean for this dimension [53].

B. Forward filtering backward sampling for word segmen-
tation

To sample the new set of embeddings in line 5 of Algorithm 1,
the forward filtering backward sampling dynamic programming
algorithm is used [54]. Forward variable α[t] is defined as
the density of the frame sequence y1:t, with the last frame
the end of a word: α[t] , p(y1:t|h−). The embeddings and
component assignments for all words not in the current utter-
ance si, and the hyperparameters of the GMM, are denoted as
h− = (X\s, z\s; a,β). The forward variables can be recursively
calculated as [39]:

α[t] =

t∑
j=1

p(yt−j+1:t|h−)α[t− j] (9)

starting with α[0] = 1 and calculating (9) for 1 ≤ t ≤ M − 1.
The p(yt−j+1:t|h−) term in (9) is the value of a joint probability
density function (PDF) over acoustic frames yt−j+1:t. In anal-
ogy to a frame-based supervised model where this term would
be calculated as the product of the PDF values of a GMM for
all the frames involved, we define this term as

p(yt−j+1:t|h−) ,
[
p
(
x′|h−

)]j
(10)

where x′ = fe(yt−j+1:t) is the acoustic word embedding cal-
culated on the segment. Thus, as in the frame-based supervised
case, each frame is assigned a PDF score; but in this case, all
j frames in the segment are assigned the PDF value of the
whole segment under the current acoustic model. The required
marginal term in (10) can be calculated as:

p(x′|h−) =
K∑

k=1

P (zh = k|z\h; a)p(x′|Xk\h;β) (11)

with the two terms in the summation calculated in the same way
as those in (5).

Once all α’s have been calculated, a segmentation can be
sampled backwards. Starting from the final positition t = M ,
we sample the preceding word boundary position using [39]:

P (qt = j|y1:t, h
−) ∝ p(yt−j+1:t|h−)α[t− j] (12)

Variable qt is the number of frames that we need to move back-
wards from position t to find the preceding word boundary. We
calculate (12) for 1 ≤ j ≤ t and sample while t− j ≥ 1.

13

http://www.cs.ubc.ca/~murphyk/mypapers.html
http://www.cs.ubc.ca/~murphyk/mypapers.html


C. Tables of complete results for all systems and metrics

In Section 4.4, several variants of our approach were considered.
In Section 4.5, a subset of these were compared to other systems
evaluated in the context of the Zero Resource Speech Challenge
2015 (ZRS) [8], using a subset of the challenge metrics. Tables 7
and 8 give the performance of all variants of our system on all
the ZRS metrics on the English and Xitsonga data, respectively.
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Table 7: Performance of several systems on English2. All scores are given as percentages (%). The word boundary detection tolerance is 30 ms
or 50% of a phoneme.

NLP Grouping Word token Word type Word boundary

Model NED Cov. Prec. Rec. F Prec. Rec. F Prec. Rec. F Prec. Rec. F

Systems from previous studies:
ZRSTopline [8] 0 100 99.5 100 99.7 68.2 60.8 64.3 50.3 56.2 53.1 88.4 86.7 87.5
ZRSBaselineUTD [8] 21.9 16.3 21.4 84.6 33.3 5.5 0.4 0.8 6.2 1.9 2.9 44.1 4.7 8.6
UTDGraphCC [19] 61.2 80.2 - - - 2.4 3.5 2.8 3.1 9.2 4.6 35.4 38.5 36.9
SyllableSegOsc [23] 70.8 42.4 13.4 15.7 14.2 22.6 6.1 9.6 14.1 12.9 13.5 75.7 33.7 46.7
SyllableSegOsc+ 71.1 100 10.2 16.3 12.6 14.3 10.9 12.4 8.4 22.1 12.2 61.1 50.1 55.2

Speaker-dependent, MFCC embeddings:
SyllableBayesClust 62.2 100 17.5 11.2 13.7 21.5 18.0 19.6 12.3 28.8 17.2 63.8 59.8 61.7
BayesSeg 61.5 100 17.1 13.7 15.2 24.0 18.1 20.6 13.1 30.1 18.2 67.3 58.3 62.5
BayesSegMinDur 56.0 100 22.7 29.6 25.5 26.6 12.5 17.0 14.0 28.6 18.8 80.7 50.4 62.0

Speaker-dependent, cAE embeddings:
BayesSeg 62.1 100 18.0 15.0 16.3 24.8 17.0 20.2 13.3 29.1 18.3 69.4 56.3 62.2
BayesSegMinDur 57.2 100 23.7 26.3 24.9 27.6 11.9 16.6 14.2 26.7 18.5 83.1 49.0 61.6

Speaker-independent, MFCC embeddings:
SyllableBayesClust 73.0 100 9.2 5.1 6.5 21.5 18.0 19.6 12.3 28.8 17.2 63.8 59.8 61.7
BayesSeg 73.2 100 9.1 5.9 7.2 23.6 18.2 20.6 12.8 29.6 17.9 66.5 58.8 62.4
BayesSegMinDur 72.0 100 9.9 13.0 11.2 25.9 12.6 17.0 13.7 28.9 18.6 79.7 51.4 62.1

Speaker-independent, cAE embeddings:
BayesSeg 71.1 100 10.3 7.2 8.5 24.5 16.6 19.8 12.9 27.7 17.6 69.6 55.8 62.0
BayesSegMinDur 66.9 100 11.9 14.0 12.8 26.9 12.2 16.7 14.1 27.5 18.6 81.7 49.6 61.7

Table 8: Performance of several systems on Xitsonga. All scores are given as percentages (%). The word boundary detection tolerance is 30 ms
or 50% of a phoneme.

NLP Grouping Word token Word type Word boundary

Model NED Cov. Prec. Rec. F Prec. Rec. F Prec. Rec. F Prec. Rec. F

Systems from previous studies:
ZRSTopline [8] 0 100 100 100 100 34.1 49.7 40.4 15.1 18.1 16.5 66.6 91.9 77.2
ZRSBaselineUTD [8] 12.0 16.2 52.1 77.4 62.2 3.2 1.4 2.0 3.2 1.4 2.0 22.3 5.6 8.9
UTDGraphCC [19] 43.2 89.4 - - - 2.2 12.6 3.8 4.9 18.8 7.8 18.8 64.0 29.0
SyllableSegOsc [23] 63.1 94.7 10.7 3.3 5.0 2.3 3.4 2.7 2.2 6.2 3.3 29.2 39.4 33.5
SyllableSegOsc+ 62.8 94.7 10.6 3.1 4.8 2.3 3.3 2.7 2.3 6.3 3.3 29.1 39.1 33.4

Speaker-dependent, MFCC embeddings:
SyllableBayesClust 57.7 100 13.0 2.5 4.2 3.8 6.8 4.9 2.5 6.6 3.6 31.4 52.3 39.2
BayesSeg 56.5 100 12.7 4.1 6.2 4.1 6.2 4.9 2.9 7.8 4.2 34.5 49.0 40.5
BayesSegMinDur 58.6 100 8.3 10.3 9.2 4.3 4.0 4.1 3.8 9.8 5.5 44.5 42.0 43.2

Speaker-dependent, cAE embeddings:
BayesSeg 52.6 100 16.0 5.0 7.6 4.1 5.7 4.8 3.1 8.1 4.5 36.0 47.5 41.0
BayesSegMinDur 57.0 100 10.3 13.6 11.7 4.2 3.4 3.7 3.7 9.3 5.3 47.8 40.6 43.9

Speaker-independent, MFCC embeddings:
SyllableBayesClust 63.0 100 8.8 3.5 5.0 3.8 6.8 4.9 2.5 6.6 3.6 31.4 52.3 39.2
BayesSeg 63.6 100 7.7 4.4 5.6 4.1 6.5 5.0 2.7 7.4 4.0 33.5 50.0 40.1
BayesSegMinDur 64.8 100 4.8 8.1 6.0 3.9 3.9 3.9 3.5 9.2 5.0 42.4 42.5 42.4

Speaker-independent, cAE embeddings:
BayesSeg 55.4 100 12.6 12.8 12.7 4.2 5.3 4.7 3.1 8.1 4.5 37.6 46.2 41.5
BayesSegMinDur 54.5 100 9.4 21.1 13.0 4.2 3.6 3.9 3.8 9.5 5.4 46.5 41.2 43.7
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