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Abstract
We consider hate speech detection through keyword spotting on
radio broadcasts. One approach is to build an automatic speech
recognition (ASR) system for the target low-resource language.
We compare this to using acoustic word embedding (AWE) mod-
els that map speech segments to a space where matching words
have similar vectors. We specifically use a multilingual AWE
model trained on labelled data from well-resourced languages
to spot keywords in data in the unseen target language. In con-
trast to ASR, the AWE approach only requires a few keyword
exemplars. In controlled experiments on Wolof and Swahili
where training and test data are from the same domain, an ASR
model trained on just five minutes of data outperforms the AWE
approach. But in an in-the-wild test on Swahili radio broadcasts
with actual hate speech keywords, the AWE model (using one
minute of template data) is more robust, giving similar perfor-
mance to an ASR system trained on 30 hours of labelled data.
Index Terms: Keyword spotting, acoustic word embeddings,
zero-resource speech processing, hate speech detection.

1. Introduction
Hate speech is a pervasive problem in many parts of the world.
In some developing countries, radio broadcasts are the primary
medium for communicating news and information to the pub-
lic [1]. They also serve as a platform for public discourse, en-
abling freedom of expression [2]. Monitoring hate speech on
these radio broadcasts in low-resource languages is extremely
challenging due to factors such as background noise, speaker
variability, and the presence of accents or dialects in the audio.

Hate speech detection can be supported by using a keyword
spotting (KWS) system to search through an audio corpus for a
predetermined set of keywords indicative of hate speech. The
conventional KWS approach involves transcribing the audio cor-
pus with an automatic speech recognition (ASR) system and then
searching for keywords in the output. However, for low-resource
languages, the absence of large quantities of transcribed speech
can make it difficult to train high-quality ASR models. Several
studies have looked into this problem, proposing methods to
train models on limited amounts of labelled data [3–6].

When we want to rapidly develop and deploy a KWS system
for hate speech detection in a new setting, it might be better to
opt for an ASR-free approach. The most popular methodology
extends query-by-example (QbE), which uses a spoken instance
of a keyword to search through an audio corpus. To use QbE for
KWS, we need a small number of spoken templates to serve as
queries for the keywords of interest; this is the approach followed
in [5, 7]. Dynamic time warping is typically used to match the
speech features of a spoken query to a search utterance [8–11].

Recent alternative approaches jointly map search segments

and query segments to a fixed vector space, allowing for faster
comparisons. Various neural networks have been considered to
obtain these acoustic word embeddings (AWEs) [12–17]. One ap-
proach to quickly obtain robust embeddings for a new language
is to train a multilingual AWE model on labelled data from mul-
tiple well-resourced languages, before applying it to the target
low-resource language [18–22]. Although these multilingual
AWE models have proven successful in controlled experiments,
there has been limited work investigating the effectiveness of
these systems beyond the experimental environment—and even
less so for hate speech detection.

In this paper, we investigate hate speech detection in low-
resource languages through KWS. Our main goal is to com-
pare ASR to a multilingual AWE-based approach on real data.
Specifically, we consider the performance of different ASR and
AWE-based systems on real Swahili radio broadcast data scraped
from stations in Kenya, a country in sub-Saharan Africa. For our
ASR systems, we build on recent advancements in multilingual
speech recognition models, enabling a pre-trained ASR model
to be fine-tuned using much less training data than that required
for training an ASR model from scratch [23–25]. We investigate
the trade-off between the amount of ASR training data and KWS
performance. We compare the fine-tuned ASR models to a KWS
system using QbE with multilingual AWEs [22, 26].

Building up to our final experiments on real radio broad-
casts, we first perform experiments in a controlled environment
where training and test data come from the same domain. Given
that the pre-trained ASR model used in our experiments includes
Swahili as a pre-training language, we also consider performance
on another low-resource language, Wolof, in our controlled ex-
periments. Then, we put the ASR and AWE KWS systems to a
real-life test by evaluating performance on Swahili radio broad-
casts. In the controlled experiments we find that fine-tuning an
ASR model using as little as five minutes of labelled data outper-
forms the AWE-based KWS system which relies on roughly one
minute of template audio. However, in the out-of-domain experi-
ment on real scraped Swahili radio broadcasts, the AWE system
proves to be more robust by almost reaching the performance
of an ASR model fine-tuned on 30 hours of data. Our findings
suggest that KWS using multilingual AWEs is a promising ap-
proach for quickly implementing hate speech detection in a new
unseen language if resources are severely limited.

2. Towards hate speech detection through
low-resource keyword spotting

In this section, we briefly give the overall methodology that we
follow towards our end goal of hate speech detection on Swahili
radio broadcasts. Exact details are then given in what follows.

We start by developing Wolof and Swahili KWS systems in
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a controlled environment where we use parallel audio-text data
from experimental datasets to train and test our models. These
datasets [27, 28] contain high-quality, noise-free read speech.
We then test our models on data from these corpora. We refer to
these experiments as in-domain because the test data comes from
the same domain as the training data. In this controlled setup, we
perform KWS using a set of keywords drawn from development
data. These are not necessarily hate speech keywords. The
benefit of this controlled setting is that we have transcriptions
for the test data, and can therefore quantify performance exactly.

We then apply the models to the out-of-domain Swahili
radio broadcasts. These recordings were obtained from three
radio stations in Kenya. They consist of a mix of read and
spontaneous speech, and also include non-speech audio like
music and advertisements. Additionally, there may be instances
of different accents and languages present within the recordings.
This is the type of real-world audio that we would like to monitor
for hate speech using KWS. As our keywords in this context,
we utilise actual hate speech keywords. These were labelled
as inflammatory words by native Swahili experts familiar with
the media environment. We should emphasise that, when we
detect occurrences of these words, they might not necessarily
respond to hate speech (e.g. the English sentence “do not kill
your neighbour” is not hate speech despite containing the word
“kill”). In a deployed system the utterances flagged by our KWS
approach would be passed on to human moderators for further
review and hate speech assessment. In this work we also use a
human moderator, but only to mark whether a detected keyword
actually occurred in an utterance. We do this for our in-the-wild
test since we do not have transcriptions for the radio broadcasts.

3. Keyword spotting with ASR
ASR is one of the most straightforward approaches to hate speech
detection via KWS in low-resource languages. Given a set of
keywords, the ASR model first transcribes the audio into text,
then the keywords are searched for in the resulting text [29].
One property of this approach is that the downstream KWS
performance depends on the ASR model’s performance.

We use an ASR model from the Wav2vec 2.0 XLS-R fam-
ily [23, 30]. XLS-R is a large-scale cross-lingual speech model
pre-trained on half a million hours of unlabelled speech data in
128 languages (including Swahili but not Wolof). The speech
representation learned during cross-lingual pre-training improves
performance for low-resource languages by leveraging data from
the high-resource languages on which it is pre-trained. Using
the pre-trained model as a starting point, the model is fine-tuned
on labelled data from the language of interest.

Previous work has shown that this fine-tuning approach leads
to competitive ASR performance even with limited amounts of
labelled data [30]. In our experiments (Table 3 specifically) we
show that the sample efficiency of the XLS-R model also extends
to KWS when training on just five minutes of labelled data.

4. Keyword spotting with multilingual
acoustic word embeddings

For a severely under-resourced language, there might not even
be limited amounts of labelled data available to fine-tune a pre-
trained ASR model. In this scenario, collecting only a few
spoken instances of a keyword of interest would allow for KWS
through query-by-example (QbE) search [5, 7]. QbE is the task
of retrieving utterances from a search corpus using a spoken
instance of a keyword, instead of a written keyword.
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Figure 1: Search utterances (u1, u2, . . . , uN ) are segmented
and mapped to a fixed-dimensional space, along with a query
segment q, to produce embeddings zin and zq , respectively. Sub-
sequently, search utterances are ranked based on the shortest
distance between a search segment zin and the query vector zq .

The workings of an AWE-based QbE system are displayed
in Figure 1. First, the search corpus is segmented into word-like
segments. Ideally, we would like to use true word boundaries
to segment each utterance in the search collection. However,
in an under-resourced setting, word boundaries are not avail-
able. Therefore, we follow an exhaustive segmentation technique
where utterances are split into overlapping segments of some
minimum to some maximum duration [31]. Concretely, utter-
ances from the search corpus (u1, u2, . . . , uN ) are segmented
to produce a set of variable-length speech segments S = {sin},
where i is the ith search segment extracted from utterance n.

A multilingual AWE model is then applied to the segmented
search corpus and query segment, mapping them to the same
fixed-dimensional vector space. We specifically use the CAE-
RNN architecture [20, 21] to train a multilingual AWE model.
This model is trained using an encoder-decoder recurrent neural
network (RNN) structure, where the encoder takes a variable-
length word segment as input to produce a fixed-dimensional
output. The output vector of the encoder is then fed as input to a
decoder RNN, which reconstructs a target that is not identical
to the input but rather an instance of the same word type. This
model is trained on word pairs using labelled data from multiple
languages (but not the target language). At inference time, we
take the projection of the final encoder RNN hidden state as the
AWE of an input segment.

Applying the AWE model to search segments S and query
segment q produces search embeddings zin and query embedding
zq , respectively. Utterances in the search corpus can then be
ranked based on the segment-query distances d(zin, zq). We can
then predict that all query-search pairs with a distance below
some threshold are positive matches (this requires a threshold
to be tuned on development data). With these predictions we
can calculate common KWS metrics and compare them to those
achieved by the ASR KWS systems.

5. Experimental setup
Data. We train and evaluate our models on Swahili and Wolof
data, collected from the Common Voice [28] and ALFFA [27]
datasets, respectively. For both datasets, we use the default
train, development, and test splits. In our controlled experiments,
we evaluate in-domain KWS performance on the Swahili and
Wolof test splits. The test split of both languages serves as the
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search collection and is not used during model development. The
Swahili search collection contains 8 941 utterances and has a
duration of approximately 14 hours, while the Wolof set contains
2 000 utterances and has a duration of approximately 2.5 hours.

We perform our in-the-wild test on recorded radio broadcasts
from three different radio stations in Kenya. We do not have
any transcriptions, speaker information or content information
on these audio clips. We segment this data using a diarisation
system that also attempts to remove music. Apart from this
preprocessing step, we simply apply our systems to this out-of-
domain data without further changes or calibration. After this
preprocessing step, 19 716 utterances are obtained, which is our
out-of-domain search collection. The duration of all utterances
is between three and 30 seconds. As explained below, a human
expert is used to evaluate the system’s performance on this set.

ASR model. For the ASR KWS systems (Section 3), we
control the amount of training data and train three ASR models
for Wolof and Swahili. Specifically, we fine-tune the XLS-R
model [30] for each language on 30 hours, one hour, and five
minutes of labelled training data.

AWE model. For the AWE-based KWS system (Section 4),
we train a multilingual AWE model on five different Common
Voice languages: Abkhazian (ab), Czech (cs), Basque (eu),
Swedish (sv), Tamil (ta). Word boundaries are obtained us-
ing the Montreal forced-aligner [32]. We pool the data from all
languages and extract 300k positive word pairs which we use
to train a multilingual CAE-RNN AWE model [20, 21]. The
encoder and decoder each consist of three unidirectional RNNs
with 400-dimensional hidden vectors and an embedding size of
100 dimensions. As inputs to the encoder, we use XLS-R to
extract speech features; we use the output of the 12th transformer
layer, producing input features with 1024 dimensions. Prelimi-
nary experiments showed using these features outperforms mel-
frequency cepstral coefficients in AWE modelling. We employ
Adam optimisation [33] with a learning rate of 0.001.

Controlled evaluation. To measure in-domain KWS per-
formance, we apply the ASR and AWE-based KWS systems to
the same search corpora. Each utterance is labelled as either 1
(if the keyword is present) or 0 (if the keyword is not present).
We report precision, recall and F1-score. For the ASR KWS
systems, we simply check whether a keyword occurs in the pre-
dicted transcript. For the AWE-based KWS, sub-segments for
utterances in the search collection are obtained by extracting
windows ranging from 20 to 35 frames with a 5-frame overlap
and then applying an AWE model to each segment. We use a
set of ten templates of 36 unique keywords with a minimum
character length of five for Swahili, and 15 unique keywords
with a minimum character length of four, for Wolof. These key-
words were randomly sampled from a larger set of words that
appear at least ten times in both the development and test sets.

Table 1: Swahili hate speech keywords used for in-the-wild KWS
on Swahili radio broadcasts, with their English translations.

Swahili English Swahili English

vita war wezi thieves
damu blood majimbo states
hama move wakora conmen
kabila tribe panga machete
utapeli fraud takataka garbage
mende cockroaches mjinga stupid
kitendawili riddle fala stupid

Query templates are drawn from development data, embedded,
and averaged to obtain a single AWE embedding representing
a keyword. The similarity between a query and search segment
is calculated using cosine distance. The threshold value in the
AWE-based KWS is tuned for the highest F1-score across all
keywords on the controlled test data.

In-the-wild evaluation. For the in-the-wild KWS, we apply
the systems directly to the out-of-domain Swahili radio broad-
casts. We use a set of keywords labelled as inflammatory by
expert analysts familiar with the media environment for the
purpose of hate speech detection. These keywords with their En-
glish translations are given in Table 1. For the AWE-based KWS
system, ten query templates per keyword are extracted from
the in-domain Swahili data. We evaluate KWS performance by
asking each approach to give 100 utterances out of the search
collection that are most likely to contain any of the hate speech
keywords. In the absence of per-word confidence scores for the
ASR models, here we simply take 100 random utterances that
were predicted to contain a keyword (for most models, the total
number of utterances was around 150).

For the AWE-based KWS, we use the 100 highest-ranked
utterances. Because we do not have transcriptions for this data,
we provide a native Swahili speaker with untranscribed record-
ings of the utterances that were predicted to contain a keyword.
They then mark whether the keyword was indeed present.

6. Results
6.1. KWS results in a controlled environment
We first look at results in a controlled test on in-domain Swahili
and Wolof data. The first three lines in Table 2 report the ASR
KWS results. The results show that fine-tuning XLS-R on only
five minutes of labelled data achieves decent KWS performance,
with F1-scores of 59% and 60% for Swahili and Wolof, respec-
tively. The multilingual AWE system using roughly one minute
of template data, performs worse on most metrics. The only
metric on which the AWE system is better is recall, where it
achieves higher scores than the 5-minute ASR system on both
languages. In practice, the AWE system could therefore be a
better option if recall is important.

We briefly consider how ASR performance is affected by
the amount of training data. For reference, the word error rates
(WERs) for the 30-hour, 1-hour, and 5-minute models are re-
spectively 9%, 36%, and 62% on Swahili. For Wolof, the WERs

Table 2: ASR and AWE KWS results (%) on in-domain test data.
For the ASR systems, the XLS-R model is fine-tuned on each
target language, controlling the amount of training data. For
the AWE KWS system, a supervised multilingual AWE is trained
on multiple well-resourced languages and applied to the two
low-resource target languages.

Model

Swahili Wolof

Prec. Rec. F1 Prec. Rec. F1

ASR:

XLS-R (30-h) 97.6 98.6 98.0 93.1 87.1 90.0
XLS-R (1-h) 96.4 76.1 85.1 93.1 74.3 82.7
XLS-R (5-min) 95.4 42.6 58.9 88.0 45.6 60.0

Multilingual AWE:

CAE-RNN
(ab+cs+eu+sv+ta)

57.1 56.1 56.6 44.0 58.4 50.2
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Table 3: Supervised AWE KWS results (%) on in-domain Swahili
test data. The supervised monolingual CAE-RNN AWE model
is trained using labelled Swahili data. It is applied with two
segmentation configurations: using ground-truth word bound-
aries (true segm.), and using a variable-length window which
is swept across the search collection (random segm.). Here we
also report the standard QbE metrics P@10 and P@N.

Model Prec. Rec. F1 P@10 P@N

Supervised monolingual:

CAE-RNN (true segm.) 95.5 90.8 93.1 98.6 94.3
CAE-RNN (random segm.) 79.2 76.1 77.6 92.2 90.9

Supervised multilingual:

CAE-RNN ab+cs+eu+sv+ta
(random segm.)

57.1 56.1 56.6 87.8 64.7

are 27%, 44%, and 68%. As expected, more training data gives
better ASR and KWS scores. But it is noteworthy that with just
five minutes of training data, we can already spot keywords with
high precision (95% and 88% for Swahili and Wolof, respec-
tively). This is especially useful for our use case, where we want
to rapidly develop KWS applications in severely low-resourced
settings. The other noteworthy finding from the ASR results
is that scores for Swahili are not notability higher than Wolof,
although the former is one of XLS-R’s pretraining languages.

We now turn to the AWE-based approach; specifically, we
ask what the upper bound on performance would be if we had
more training data or a more idealised search setting. Therefore,
for a moment, we assume we have labelled data available and
perform top-line experiments on the in-domain Swahili data,
shown in Table 3. A supervised Swahili AWE model is trained
on 30 hours of labelled data and applied to the search collection
that is segmented using true word boundaries. Results are shown
in the first row of Table 3, serving as the top-line performance
for AWE KWS, with a high F1-score of 93%. Compared to
the 30-hour ASR system (Table 2), the idealised AWE system
comes closer to the F1 of 98%. The second row in Table 3 shows
KWS performance using a supervised Swahili AWE model but
applied to search segments extracted by sliding a variable-length
window across the search collection—the way we apply the
AWE approach in practice and in Table 2. Segmentation without
true word boundaries incurs a significant penalty, resulting in
an F1-score drop to 77%. It is clear that the sliding window
approach has a large effect on downstream performance, so
future work should consider more sophisticated unsupervised
word segmentation techniques.

6.2. KWS results in the wild
We now turn to our main research question: comparing ASR
to multilingual AWE-based KWS on real-life, out-of-domain
audio in a low-resource setting. As mentioned in Section 5,
systems are applied to out-of-domain Swahili radio broadcasts,
after which, for each system, the top 100 utterances predicted to
contain a hate speech keyword (Table 1) are manually reviewed.
The results are given in Table 4.

The table reports precision: the proportion of retrieved top-
100 utterances that correctly contain a hate speech keyword.
Surprisingly, we see that the multilingual AWE KWS system
achieves a precision of 45%—better than the 5-minute and even
the 1-hour ASR system in this in-the-wild test. This is in contrast
to the in-domain KWS results, where the 1-hour ASR model
outperformed the AWE KWS system (Table 2).

Table 4: In-the-wild KWS results (%) on Swahili radio broad-
casts. For each system, we report the percentage of utterances
retrieved containing a keyword (precision) and the percentage
of utterances retrieved containing music.

Model Precision Music

ASR:

XLS-R (30-h) 52 30
XLS-R (1-h) 42 29
XLS-R (5-min) 36 17

Multilingual AWE:

CAE-RNN ab+cs+eu+sv+ta 45 2

Further investigation is required to understand exactly why
the relative performance of the ASR and AWE systems are af-
fected differently when applied to out-of-domain data. However,
it is worth noting that several studies have shown that ASR sys-
tem performance can drop dramatically when it is applied to
data outside of its training domain [34–36]. One example where
this can be seen in this case is how many of the ASR retrievals
contain music (which we asked the human annotator to mark).

The in-the-wild search collection has been diarised automat-
ically, which included a step to remove music segments. But this
preprocessing step is not perfect: the search collection still ends
up with some music (which neither the ASR nor AWE systems
have seen in training). Table 4 shows that, out of the top-100
utterances for the 30-hour ASR system, 30% contained music.
This decreases for the 1-hour (29%) and 5-minute (17%) ASR
systems. But the AWE KWS system only retrieves two utter-
ances containing music. And of these two, one utterance actually
did contain a hate speech keyword in the music lyrics (there
are also examples of such correct matches in the ASR music re-
trievals). Nevertheless, this shows that the AWE approach seem
to be more robust to domain mismatch compared to training an
ASR system on one hour or five minutes of labelled data.

7. Conclusion
This paper considered the problem of keyword spotting (KWS)
for the purpose of hate speech detection in low-resource lan-
guages. We compare two KWS systems for data from Swahili
and Wolof: a fine-tuned automatic speech recognition (ASR)
model using different amounts of training data, and an ASR-free
KWS system that utilises multilingual acoustic word embed-
dings (AWEs). The results show that fine-tuning a pre-trained
multilingual ASR model using even a small amount of labelled
data can outperform an AWE-based KWS system in controlled
environments where training and test data come from the same
domain. However, the AWE-based KWS system is more robust
on out-of-domain radio broadcast data and achieves comparable
results to an ASR model fine-tuned on 30 hours of labelled data.
In the end, the merits of ASR vs AWE KWS will come down to
the practical setting: it will depend on whether labelled training
data can be collected from the target domain or not, and whether
precision or recall is more important.
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