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Abstract
Acoustic word embedding models map variable duration speech
segments to fixed dimensional vectors, enabling efficient speech
search and discovery. Previous work explored how embeddings
can be obtained in zero-resource settings where no labelled data
is available in the target language. The current best approach
uses transfer learning: a single supervised multilingual model
is trained using labelled data from multiple well-resourced lan-
guages and then applied to a target zero-resource language (with-
out fine-tuning). However, it is still unclear how the specific
choice of training languages affect downstream performance.
Concretely, here we ask whether it is beneficial to use training
languages related to the target. Using data from eleven languages
spoken in Southern Africa, we experiment with adding data from
different language families while controlling for the amount of
data per language. In word discrimination and query-by-example
search evaluations, we show that training on languages from the
same family gives large improvements. Through finer-grained
analysis, we show that training on even just a single related lan-
guage gives the largest gain. We also find that adding data from
unrelated languages generally doesn’t hurt performance.
Index Terms: acoustic word embeddings, zero-resource speech
processing, transfer learning, languages of Southern Africa.

1. Introduction
Developing robust speech systems for zero-resource languages—
where no transcribed speech resources are available for model
training—remains a challenge. Although full speech recognition
is not possible in most zero-resource settings, researchers have
proposed methods for applications such as speech search [1–3],
word discovery [4–7], and segmentation and clustering [8–10],
making use of only unlabelled speech audio. Many of these
applications require speech segments of different lengths to be
compared. This is conventionally done using alignment (e.g.
with dynamic time warping). But this can be slow and inaccurate.

Acoustic word embedding (AWE) models map a variable
duration speech segment to a fixed dimensional vector [11]. The
goal is to map instances of the same word type to similar vectors.
Segments can then be efficiently compared by calculating the
distance in the embedding space. Given the advantages AWEs
have over alignment methods, several AWE models have been
proposed [12–23]. Many of these are for the supervised setting,
using labelled data to train a discriminative model.

For the zero-resource setting, a number of unsupervised
AWE approaches have also been explored, many relying on
autoencoder-based neural models trained on unlabelled data in
the target language [17, 24–26]. However, there still exists a
large performance gap between these unsupervised models and
their supervised counterparts [11, 26]. A recent alternative for
obtaining AWEs on a zero-resource language is to use multilin-
gual transfer learning [27–31]. The goal is to have the benefits

of supervised learning by training a model on labelled data from
multiple well-resourced languages, but to then apply the model to
an unseen target zero-resource language without fine-tuning it—
a form of transductive transfer learning [32]. This multilingual
transfer approach has been shown to outperform unsupervised
monolingual AWE models [29, 33].

Although there is clear benefit in applying multilingual
AWE models to an unseen zero-resource language, it is still
unclear how the particular choice of training languages affects
subsequent performance. Preliminary experiments [29] show
improved scores when training a monolingual model on one
language and applying it to another from the same family. But
this has not been investigated systematically and there are still
several unanswered questions: Does the benefit of training on re-
lated languages diminish as we train on more languages (which
might or might not come from the same family as the target
zero-resource language)? When training exclusively on related
languages, does performance suffer when adding an unrelated
language? Should we prioritise data set size or language diversity
when collecting data for multilingual AWE transfer?

We try to answer these questions using a corpus of under-
resourced languages spoken in Southern Africa. These languages
can be grouped into different families based on their linguistic
links. We specifically want to see whether it is beneficial to use
closely related languages when training a multilingual model
catered to a specific zero-resource language, similar to [34]. We
divide the corpus into training and test languages, with (some of)
the test languages coming from families that also occur in train-
ing. We conduct several experiments where we add data from
different language families, and also control for the amount of
data per language. AWEs are evaluated in an isolated word dis-
crimination task and in query-by-example (QbE) speech search
on full utterances. To our knowledge, only one other study [30]
has done AWE-based QbE using multilingual transfer.

Our main findings are as follows. (i) Training a multilin-
gual model using languages that are closely related to the target
improves performance. This is true, not just because of the in-
crease in data, but because of language diversity. (ii) When we
systematically add training languages, the largest improvements
are gained from adding a single related language. Adding more
related languages gives small gains. Adding unrelated languages
generally gives small or no gains, but also doesn’t hurt. (iii) For a
target language, the performance of a multilingual model trained
on unrelated languages can be matched by a model trained with
much less data from multiple related languages.

2. Languages of South Africa
The majority of languages in Africa are considered under-
resourced [35]. This includes the eleven official languages of
South Africa. As show in Figure 1, nine of these languages be-
long to the larger Southern Bantu family: isiZulu (Zul), isiXhosa
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Figure 1: A family tree for the official South African languages.1

(Xho), Sepedi (Nso), Setswana (Tsn), Sesotho (Sot), Xitsonga
(Tso), siSwati (Ssw), Tshivenda (Ven) and isiNdebele (Nbl).
Many of these languages are also spoken in countries neighbour-
ing South Africa. From the Southern Bantu family there exist
two principal, Nguni-Tsonga and Sotho-Makua-Venda. In the
Sotho-Makua-Venda subfamily, Ven is somewhat of a standalone.
The other two languages, Afrikaans (Afr) and English (Eng), are
Germanic languages from the Indo-European family. All of these
languages are considered under-resourced, except for Eng [36].
To give an intuitive idea of how related these languages are, most
of the Bantu languages that are grouped together at the lowest
level of the hierarchy would (to an extent) be intelligible to a
native speaker of another languages in the same group.

3. Acoustic word embedding model
We use the CONTRASTIVERNN AWE model of [33].2 It per-
formed the best of the model variants considered for multilin-
gual transfer in [33]. The model consists of an encoder recurrent
neural network (RNN) that produces fixed-dimensional repre-
sentations from variable-length speech segments. It is trained
to minimise the distance between embeddings from speech seg-
ments of the same word type while maximising the distance be-
tween embeddings from multiple words of a different type. Let’s
use X = x1,x2, . . . ,xT to denote a sequence of speech fea-
tures. Formally, given speech segments Xa and Xp containing
instances of the same word type and multiple negative examples
Xn1 , . . . , XnK , the CONTRASTIVERNN produces embeddings
za, zp, zn1 , . . . , znK (subscripts indicate anchor, positive and
negative, respectively). Each embedding is a fixed dimensional
vector z ∈ RM . The model is illustrated in Figure 2. Let
sim(u,v) = u>v/‖u‖‖v‖ denote the cosine similarity be-
tween vectors u and v. The loss given a positive pair (Xa, Xp)
and the set of negative examples is then defined as [37]:

J = −log
exp
{

sim(za, zp)/τ
}∑

j∈{p,n1,...,nK}
exp
{

sim(za, zj)/τ
} , (1)

where τ is a temperature parameter, tuned on development data.
In the zero-resource setting we don’t have labelled data in

the target language to construct the positive and negative word
pairs required for training. We therefore follow the approach
of [29], and train a multilingual model on ground truth word pairs
(extracted from forced alignments) from a number of languages
for which we have labelled data. Subsequently, at test time, we
apply the encoder RNN from the multilingual model to extract
AWEs for speech from the target zero-resource language.

4. Query-by-example speech search
For evaluating the different AWE models we use an isolated word
discrimination task [38]. Recent findings [39] suggest, however,

1https://southafrica-info.com/arts-culture/
11-languages-south-africa/

2We extend the code available at https://github.com/
christiaanjacobs/globalphone_awe_pytorch.

Figure 2: The CONTRASTIVERNN. The model is trained to
minimise the distance between the anchor and positive item
d(za, zp) while maximising the distance between the anchor
and multiple negatives (za, znk ).

that this evaluation is not always indicative of downstream sys-
tem performance. We therefore also perform query-by-example
(QbE) speech search, which in contrast to the word discrimina-
tion task, does not assume a test set of isolated words, but instead
operates on full unsegmented utterances.

Concretely, QbE speech search is the task of identifying the
utterances in a speech collection that contain instances of a given
spoken query. A number of approaches have been put forward
for AWE-based QbE [1, 40, 41]. Here we use the simplified
approach from [42]. Using an AWE model, we first embed the
query segment. If we knew the word boundaries in the search
collection, we could embed each of the words in an utterance
and simply look up the closest embeddings to the query. Instead,
because we do not have word boundaries, each utterance is
split into overlapping segments from some minimum to some
maximum duration. Each segment from each utterance is then
embedded separately using the AWE model. Finally, to do the
QbE task, the query embedding is compared to each of the
utterance sub-segment embeddings (using cosine distance), and
the minimum distance over the utterance is then taken as the
score for whether the utterance contains the given query.

5. Experimental setup
Data. We perform all our experiments on the NCHLT speech
corpus [36], which provides wide-band speech from each of the
eleven official South African languages (§2). We use a version of
the corpus where all repeated utterances were removed, leaving
roughly 56 hours of speech from around 200 speakers in each
language. We use the default training, validation and test sets.
We treat six of the languages as well-resourced: Xho∗, Ssw∗,
Nbl∗, Nso†, Tsn† and Eng‡. We use labelled data from the well-
resourced languages to train a single supervised multilingual
model and then apply the model to the target zero-resource
languages. More specifically, we extract 100k true positive word
pairs using forced alignments for each training language. We
select Zul∗, Sot†, Afr‡, and Tso as our zero-resource languages
and use another language, Ven, for validation of each model.3

Training and evaluation languages are carefully selected such
that for each evaluation language at least one language from the
same family is part of the training languages, except for Tso
which is in a group of its own.

Models. All speech audio is parametrised as 13-dimensional
static Mel-frequency cepstral coefficients. The encoder unit of
the CONTRASTIVERNN models (§3) consists of three unidirec-
tional RNNs with 400-dimensional hidden vectors, with an em-
bedding size of M = 130 dimensions. Models are optimised
using Adam optimisation [43] with a learning rate of 0.001. The

3We use superscripts to indicate the different language families:
∗Nguni, †Sotho-Tswana, ‡Germanic.
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Figure 3: AP (%) when training a monolingual supervised CON-
TRASTIVERNN on each language (rows) and then evaluating it
on each of the other languages (columns). Heatmap colours are
normalised for each evaluation language (i.e. per column).

temperature parameter τ in (1) is set to 0.1.
Evaluation. We consider two tasks for evaluating the per-

formance of the AWE models. First, we use the same-different
word discrimination task [38] to measure the intrinsic quality of
the AWEs. To evaluate a particular AWE model, a set of isolated
test word segments is embedded. We use roughly 7k isolated
word instances per language from the test data. For every word
pair in this set, the cosine distance between their embeddings
is calculated. Two words can then be classified as being of the
same or different type based on some distance threshold, and a
precision-recall curve is obtained by varying the threshold. The
area under this curve is used as final evaluation metric, referred
to as the average precision (AP). We are particularly interested in
obtaining embeddings that are speaker invariant. As in [44], we
therefore calculate AP by only taking the recall over instances
of the same word spoken by different speakers.

The second task is QbE (§4). For each evaluation language
we use approximately two hours of test utterances as the search
collection. Sub-segments for the utterances in the speech collec-
tion are obtained by embedding windows stretching from 20 to
60 frames with a 3-frame overlap. For each evaluation language
we randomly draw instances of 15 spoken query word types from
a disjoint speech set (the development set—which we never use
for any validation experiments) where we only consider query
words with at least 5 characters for Afr and Zul and 3 for Sot.
There are between 6 and 51 occurrences of each query word. For
each QbE test, we ensure that the relevant multilingual AWE
model has not seen any of the search or query data during train-
ing or validation. We report precision at ten (P@10), which is
the fraction of the ten top-scoring retrieved utterances from the
search collection that contains the given query.

6. Experimental results
6.1. Cross-lingual evaluation

Before looking at multilingual modelling, we first consider a
cross-lingual evaluation where we treat each language as a train-
ing language, train a supervised monolingual AWE model, and
then apply it to every other language. This allows us to see the
effect of training on related languages in a pairwise fashion. The

Table 1: AP (%) on test data for multilingual models trained on
different combinations of well-resourced languages. Models are
applied to two zero-resource languages from different language
families, Nguni and Sotho-Tswana. For each training language
100k word pairs were extracted.

Multilingual model Zul∗ Sot†

Nguni:

Xho∗ + Ssw∗ + Nbl∗ 68.6 —
Xho∗ + Ssw∗ + Eng‡ 60.9 —
Xho∗ + Nso† + Eng‡ 55.7 —
Tsn∗ + Nso† + Eng‡ 37.5 —
Xho∗ + Ssw∗ + Nbl∗ (10% subset) 58.6 —

Sotho-Tswana:

Nso† + Tsn† — 76.7
Nso† + Eng‡ — 64.8
Xho∗ + Ssw∗ — 51.9
Xho∗ + Eng‡ — 52.5
Nso† + Tsn† (10% subset) — 58.4

results are shown in Figure 3. For each evaluation language
excluding Tso and Ven, which are in family groups of their own,
the best results are achieved from models trained on a language
from the same family. E.g. on Zul, Xho is the best training
language giving an AP of 58.5%. Eng is the only exception
where the model trained on Sot performs better than using Afr,
the other Germanic language. Although Ven is in its own group
at the lowest layer of the family tree in Figure 1, some of the
best results when evaluating on Ven are obtained using models
trained on Sotho-Tswana languages (Sot, Tsn, Nso), which are
in the same family at a higher level. We also see that for all nine
Bantu evaluation languages, worst performance is obtained from
the two Germanic models (Afr, Eng).

6.2. Multilingual evaluation

The cross-lingual experiment above was in large part our in-
spiration for the subsequent analysis of multilingual models.
Concretely, we hypothesise that even better performance can be
achieved by training on multiple languages from the same fam-
ily as the target zero-resource language, and that this would be
superior to multilingual models trained on unrelated languages.
Focusing on two evaluation languages, Zul and Sot from distinct
language families, we investigate this hypothesis by training
multilingual models with different language combinations, as
shown in Table 1. Firstly, we see the best result on a language
when all the training languages comes from the same family
as the target. Secondly, we see how the performance gradually
decrease as the number of training languages related to the target
drop. Furthermore, notice the performance boost from including
even just one training language related to the target compared
to not including any. E.g. on Sot we see a increase of more
than 12% absolute when adding just one related language (from
52.5% and 51.9% to 64.8%).

To further demonstrate the benefit of using training lan-
guages from the same family, we train a multilingual model for
each evaluation language on all its related languages using a
10% subset of the original data. For both Zul and Sot, the sub-
set models outperform the models where no related languages
are used. E.g. on Zul, the Xho+Ssw+Nbl subset model outper-
forms the full Tsn+Nso+Eng model (no related languages) by
more than 20% in AP. Moreover, this subset model (58.6% in
AP) even outperforms the Xho+Nso+Eng model (55.7%) where
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Figure 4: Same-different results from two sequences of multilingual models, trained by adding one language at a time. For each training
language, 100k positive word pairs are used, which is indicated on the x-axis.
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Figure 5: QbE results on Zul using the same sequences of multi-
lingual models as in Figure 4.

all the training data from one related language are included
and almost matches the AP when using two related languages
(Xho+Ssw+Eng, 60.9%).

These comparisons do more than just show the benefit of
training on related languages: they also show that it is beneficial
to train on a diverse set of related languages.

6.3. Adding more languages

In the above experiments, we controlled for the amount of data
per language and saw that training on languages from the same
family improves multilingual transfer. But this raises a question:
will adding additional unrelated languages harm performance?
To answer this, we systematically train two sequences of multi-
lingual models on all six well-resourced languages, evaluating
each target language as a new training language is added.

Same-different results for all five evaluation languages are
shown in Figure 4 and QbE results for Zul are shown in Figure 5.
As for Zul, the trends in the same-different and QbE results track
each other closely for the other evaluation languages (so these
are not shown here). In the fist sequence of multilingual models
(green), we start by adding the three Nguni languages (Xho, Ssw,
Nbl), followed by the two Sotho-Tswana languages (Nso, Tsn),
and lastly the Germanic training language (Eng). The second
sequence (orange) does not follow a systematic procedure.

On Zul, the green sequence, which starts with a related
language (Xho), initially achieves a higher score compared to
the orange sequence in both Figures 4 and 5. Then, the score
gradually increase by adding more related languages (Ssw, Nbl).
Thereafter, adding additional unrelated languages (Nso, Tsn,
Eng) show no performance increase. In fact, AP decreases
slightly after adding the two Sotho-Tswana languages (Nso,
Tsn), but not significantly. The orange sequence starts low on

Zul until the first related language (Ssw) is added, causing a
sudden increase. Adding the Germanic language (Eng) has little
effect. Adding the last two related languages (Nbl, Xho) again
causes the score to increase. A similar trend follows for Sot
and Afr, where adding related languages causes a noticeable
performance increase, especially when adding the first related
language; after this, performance seem to plateau when adding
more unrelated languages. (Afr is the one exception, with a drop
when adding the last language in the orange sequence). On Tso,
which does not have any languages from the same family in the
training set, AP gradually increases in both sequences without
any sudden jumps. Although Ven isn’t in the same family as Nso
and Tsn at the lowest level of the tree in Figure 1, it belongs to
the same family (Sotho-Tswana) at a higher level. This explains
why it closely tracks the Sot results.

Summarising these results, we see that adding unrelated
languages generally does not decrease scores, but also does not
provide a big benefit (except if it is one of the earlier languages
in the training sequence, where data is still limited). In contrast,
it seems that training on languages from the same family is again
beneficial; this is especially the case for the first related language,
irrespective of where it is added in the sequence.

7. Conclusion
We investigated the effect of training language choice when
applying a multilingual acoustic word embedding model to a
zero-resource language. Using word discrimination and query-
by-example search tasks on languages spoken in Southern Africa,
we showed that training a multilingual model on languages re-
lated to the target is beneficial. We observed gains in absolute
scores, but also in data efficiency: you can achieve similar perfor-
mance with much less data when training on multiple languages
from the same family as the target. We showed that even includ-
ing just one related language already gives a large gain. From
a practical perspective, these results indicate that one should
prioritise collecting data from related languages (even in modest
quantities) rather than collecting more extensive datasets from
diverse unrelated families, when building multilingual acoustic
word embedding models for a zero-resource language.
Acknowledgements. This work is supported by the South African NRF
(120409), a Google Faculty Award, and support from the Stellenbosch
University School of Data Science and Computational Thinking. We
thank Ewald van der Westhuizen for the NCHLT forced alignments.

1552



8. References
[1] K. Levin, A. Jansen, and B. Van Durme, “Segmental acoustic

indexing for zero resource keyword search,” in Proc. ICASSP,
2015.

[2] S.-F. Huang, Y.-C. Chen, H.-y. Lee, and L.-s. Lee, “Improved audio
embeddings by adjacency-based clustering with applications in
spoken term detection,” arXiv preprint arXiv:1811.02775, 2018.

[3] Y. Yuan, C.-C. Leung, L. Xie, H. Chen, B. Ma, and H. Li, “Learn-
ing acoustic word embeddings with temporal context for query-by-
example speech search,” in Proc. Interspeech, 2018.

[4] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in
speech,” IEEE Trans. Audio, Speech, Language Process., vol. 16,
no. 1, pp. 186–197, 2008.

[5] A. Jansen and B. Van Durme, “Efficient spoken term discovery
using randomized algorithms,” in Proc. ASRU, 2011.

[6] L. Ondel, H. K. Vydana, L. Burget, and J. Černockỳ, “Bayesian
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