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Abstract. The National Stock Theft Prevention Forum estimates an-
nual losses of up to R3 billion owing to stock theft on South African
farms. These concerns sparked innovative technologies in the security in-
dustry, one of which is a device for livestock that transmits GPS data
when an animal is in distress. In this paper, time series machine learning
techniques are applied to real-world livestock GPS trajectories. Our main
goal is to distinguish between four categories of trajectories: theft, preda-
tion, own handling and other. We lay special emphasis on distinguishing
theft-alarms from the rest since these have direct implications for the
safety and financial sustainability of farmers. We have access to a large
number of trajectories recorded over the last six years. Unfortunately,
these trajectories are not labelled with the four categories. In this un-
supervised setting, we propose a livestock trajectory embedding (LTE)
model as a feature extractor for downstream clustering. The LTE model
has a convolutional-deconvolutional architecture and is trained as an au-
toencoder to reconstruct its trajectory input. The proposed approach
achieves a purity of 59.66%. We also show that the model produces a
purity of 80.11% when only considering emergencies vs non-emergencies.
We hope that the clusters predicted by our model could be used in down-
stream classification systems to provide critical information to farmers in
emergency situations. Based on the results in this paper, we recommend
that for future work, the upstream data resolution should be increased
in order to increase overall performance.

Keywords: GPS trajectory · livestock movement · unsupervised learn-
ing · time series embeddings · IoT.

1 Introduction

South Africa is experiencing high rates of farm murders [1] and livestock theft [2].
Livestock farmers also have to deal with the crippling cost of predator animals
hunting livestock, estimated to be an annual loss of 13% for production animals
[12]. In an attempt to alleviate these issues, FarmRanger developed an internet-
of-things (IoT) device in 1999 that thousands of farmers now use to protect their
⋆ Supported by FarmRanger.
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livestock from theft and predation.1 A single unit is attached to an animal in a
flock or herd. The unit monitors acceleration and when certain conditions are
met,2 it triggers an alarm that transmits GPS data to the owner. FarmRanger
has recorded this GPS data since 2016, with just short of a million alarms to
date. However, it is unknown what really happened during each of these events.
It could have been theft, predation or one of several other possibilities that can
cause rapid movement.

Figure 1 shows two examples of what a user would typically see on Farm-
Ranger’s app. From these two examples, the reader can already imagine that a
farmer would respond differently to each event depending on what is disturbing
the animal. The implications on the safety of a farmer due to armed theft versus
that of a sheep being attacked by a jackal are drastically different — the first
being a life-threatening situation, while the latter only has financial implica-
tions. With this in mind, we ask the question: is it possible to utilise livestock
movement data in order to distinguish theft, predation, own-handling and other
events3 from one another? Doing so would equip a FarmRanger client with the

1 More details about FarmRanger can be found at www.farmranger.co.za.
2 For intellectual property purposes, the exact details of the alarm trigger algorithm

cannot be disclosed in this paper, but all the relevant details of the captured GPS
trajectories can and are discussed in this work.

3 Other movement alarms can be events like playing, lightning strikes, etc.

(a) Example of a jackal attack. (b) Example of theft.

Fig. 1: The GPS data points of two examples of ideal scenarios. One can see that
in the case of (a) there is random movement without the sense of moving in a
certain direction. On the other hand, in the case of (b), deliberate movement
in one direction can be seen. Note that these are carefully selected examples,
and not necessarily representative of the rest of the data, i.e. in many cases it is
much more difficult to make an easy classification between predation and theft.
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necessary knowledge to properly prepare for an emergency and ultimately help
keep our farmers safe. As a secondary goal, we would like to distinguish emer-
gency events (theft and predation) from non-emergency events (own-handling
and other).

In this paper, we introduce a new application of time series machine learn-
ing techniques to address the aforementioned problem. Concretely, we propose
a livestock trajectory embedding (LTE) model to act as a feature extractor
which can be used for K-means clustering of trajectories. The LTE model is
a convolutional-deconvolutional autoencoder which is trained to reconstruct its
trajectory input. The model encodes a given trajectory to a fixed-dimensional
feature space which is in turn decoded to the original trajectory. This fixed-
dimensional encoding is a trajectory’s embedding. Our model is compared to
two other approaches for feature extraction by performing K-means clustering
and calculating purity and other clustering metrics on the resulting clusters. We
show that LTE outperforms the other two baseline approaches.

2 Related Work

One other machine learning problem that also utilises GPS trajectories, is the
task of classifying mode-of-transport. This means feeding GPS data points to a
model that predicts whether a person is walking, driving, riding a bicycle etc.
Various methods have achieved scores of up to 75% in classification accuracy [3].
This is similar to the problem that we are interested in, in the sense that extract-
ing useful features from the raw GPS points is crucial for accurate classification.
However, one major difference is that this is typically framed as a semi-supervised
problem with labelled and unlabelled data [17]. In addition, the time interval
between data points is relatively small (1-5 seconds) for mode-of-transport clas-
sification, in comparison to our data set (30 seconds). One approach proposed
to classify mode of transport incorporates a convolutional-deconvolutional au-
toencoder to extract features from unlabelled data to assist in the supervised
classification task [3]. In this model, an autoencoder and a classifier are trained
jointly with weighted losses that can be tuned. The classifier is simply a softmax
layer added to the encoder. We follow a similar but fully unsupervised approach
for our LTE model.

Our LTE model is heavily inspired by models from the area of speech pro-
cessing, referred to as acoustic word embedding models [7, 8]. These models are
similar to our LTE model in the sense that they produce a fixed-dimensional rep-
resentation of a time series — in this case a spoken utterance. The aim of these
models is to produce embeddings where similar-sounding words are close to one
another in the embedded space and dissimilar words are far from one another.
In the same way, the aim of the LTE model is to produce fixed-dimensional
embeddings for GPS time series where similar trajectories are close to one an-
other. As in [8], we use a convolutional neural network as the basis for our LTE
model. Other acoustic word embedding models have also used recurrent neural
networks [6, 16], but we leave a comparison between these two network types
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for future work. This work in the speech processing area precedes the work in
mode-of-transport classification mentioned above.

3 Data: Livestock Trajectories

A livestock trajectory refers to a time series of latitude and longitude values with
a 30-second interval between points. These trajectories are recorded directly after
an alarm is triggered by the device. Alarms are triggered based on an onboard
accelerometer.4 An alarm can be caused by a myriad of reasons, ranging from
theft to “Mad Sheep” disease. For this work, we define four main classes:

1. Theft: humans trying to steal livestock.
2. Predation: predator animals hunting livestock. These are mainly jackals

but also include wild dogs, lynxes and leopards.
3. Own handling: workers on the farm handling the livestock in day-to-day

operations.
4. Other: miscellaneous reasons which do not fall in the above categories. These

alarms are uncommon and non-emergency phenomena like the previously
mentioned “Mad Sheep” disease.

3.1 Data Sets

Currently, it is troublesome to acquire labels for events. The farmer must be
contacted relatively soon after an alarm occurred and asked what happened.
Not only is this a tedious and human-intensive task, but the acquired labels are
not necessarily ground truth. A farmer might report a non-emergency when an
alarm occurred, but in fact, thieves or predators could have been on the scene
unknowingly. Nevertheless, it is still possible to acquire a small labelled data set
with which the models can be evaluated. We, therefore, have two available data
sets, a large unlabelled training set and a small labelled validation set.

Training Data. A total of approximately 800 000 trajectories are available in
the training set with no labels available. FarmRanger records around 500 new
alarms every day.

4 Accelerometer data is not recorded.

Table 1: The class distribution for the validation data set.

Theft Predation Own handling Other

Count 35 62 63 16
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Fig. 2: An example of three GPS data points in a trajectory. Each point pi has
a corresponding latitude, longitude and time value.

Validation Data. The validation data set is composed of 176 trajectories with
its class distribution shown in Table 1. These labels were acquired by calling
farmers within one day of the event. The true, real-world distribution of classes
remains unknown, therefore it is impossible to know if the validation set provides
a true representation of the data in terms of the class distribution.

3.2 Processing Raw Data

GPS values are processed to produce a distance, time, speed and angle channel
for each trajectory. By design, acceleration is not included since the low sampling
frequency won’t allow for accurate values. More formally, we have a sequence
of GPS points p1,p2, ...,pT , with each pi = [lat, lng, t]. From this sequence we
produce a new feature time series z1, z2, ..., zT . Each of these features within zi
is determined as in Figure 2, according to the following equations:

zi =


di
∆ti
si
∆θi

 (1)

di = GeoDist(pi[lat, lng], pi−1[lat, lng]) (2)

∆ti = pi[t]− pi−1[t] (3)

si =
di
∆ti

(4)

∆θi = θi − θi−1 (5)

where GeoDist denotes the geographical distance between two GPS points. The
result is a four-channel one-dimensional vector time series. We limit the length of
the time series to T = 30 since this is the default recorded length for alarms. If a
trajectory has less than 30 data points, it is padded with zeros. Each trajectory
x(n) is then denoted as

x(n) =
[
z1, z2, ..., zT

]
, T = 30
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with the superscript (n) indicating the nth training or validation trajectory. The
whole feature vector is scaled to have zero mean and unit variance.

3.3 Obstacles

As in any real-world setting, the data can be highly irregular and unpredictable.
In this context, the following factors influence the quality of the data in a major
way.

GPS Sensor. The GPS sensor has a best accuracy of approximately 5 meters
and is heavily influenced by signal strength. Poor signal strength can result in
unpredictable jumps in a trajectory. All other GPS obstacles apply as well, such
as dilution of precision (DOP).

GSM Signal. The device uses GSM mobile communication to transmit data.
Some data points are lost when GSM signal strength is insufficient, resulting in
time jumps in the trajectory. Farms can have excellent signal in one area, but
poor signal in another area.

Time Interval. Time irregularity is almost certain for each trajectory. As pre-
viously mentioned, time jumps (often up to a few minutes) occur if GSM signal
strength is poor. In addition, by design, a new data point is transmitted imme-
diately when the conditions for a new trigger are met. This results in a time
series with compact and sparse parts in the same sequence.

4 Model: Livestock Trajectory Embeddings

Our livestock trajectory embedding (LTE) model is heavily inspired by [7, 8, 3].
Concretely, it is a convolutional-deconvolutional autoencoder with the architec-
ture shown in Figure 3. In essence, an autoencoder is an unsupervised technique
which tries to reconstruct its input with the aim of capturing valuable infor-
mation in the process. First, the input is encoded to a fixed-dimensional space
smaller than the dimensionality of the input,5 called the latent embedding h,
and then decoded to the original form of the trajectory. We constrict the latent
embedding to a fixed 10 dimensions.6 By training this model to reconstruct its
input through a lower-dimensional compressed representation, the hope is that
the latent embedding would capture meaningful features that can be used in
downstream tasks.

Formally, the reconstruction x̂ can be described by:

x̂ = g(f(x)) (6)
5 Technically this is called an under complete autoencoder [5].
6 The size of the latent embedding was fine-tuned to 10 based on the evaluation metrics

in Section 5.2, calculated on the validation set.
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where f is the encoder architecture producing h from the input x and g is the
decoder architecture producing x̂ from h. The model is trained by minimizing
the mean squared error (MSE) loss function:

L =
1

N

N∑
n=1

l(x(n), x̂(n)) (7)

with

l(x, x̂) =
1

T

T∑
i=1

||zi − ẑi||2 (8)

L is therefore the total loss, x is the input and x̂ is the reconstruction of the
input. In our case, the LTE model is trained with the Adam [9] optimizer, a
batch size of 256 and a learning rate of 0.05 for 300 epochs on the training data
described in Section 3.1. After training the LTE model and embedding all the
trajectories, we apply K-means clustering to cluster the trajectories. A value of
K = 7 was arrived upon based on the Elbow Method, Silhouette Method [14]
and the Davies-Bouldin Index [4] giving roughly the same number of clusters.

5 Experimental Setup

The goal of extracting fixed-dimensional features from the raw GPS data is to
cluster similar trajectories. We consider two baseline approaches, both of which
also produce fixed-dimensional representations of a trajectory. To compare the
quality of these representations to the proposed LTE method, we perform K-
means clustering on the respective representations and then calculate purity
and other clustering metrics on the validation data.

Fig. 3: The architecture of the convolutional-deconvolutional autoencoder. The
model takes a four-channel, one-dimensional input, encodes it to a ten-
dimensional vector and then decodes it to reproduce the input. Layer types
and output shapes are shown. The convolutional component has three 1-D con-
volution layers with 8, 16 and 32 filters respectively, each followed by a ReLU
layer. All filters have a size of 3 and a stride of 1.
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5.1 Baseline Approaches

Two baseline approaches are implemented in order to produce features for clus-
tering. The resulting feature vectors are scaled to have zero mean and unit
variance and are then clustered by performing K-means with K = 7. We also
report random assignment as a third baseline.

Dynamic Time Warping. Dynamic Time Warping (DTW) is a common algo-
rithm used to calculate a distance metric (or alignment cost) between two time
series with variable lengths [15]. We follow the method in [10] to produce fixed-
dimensional features from trajectories. 100 trajectories are chosen at random
from the training data set as exemplars to serve as a reference set. The DTW
distance between each trajectory and each exemplar in the reference set is then
calculated to produce 100 features for each trajectory. These fixed-dimensional
representations can now be clustered and metrics can be calculated from the
validation set.

Feature Engineering. Feature engineering is the process of a human designing
features based on an understanding of the context of the task and the data.
For this purpose, we engineer five intuitive features to summarize the whole
trajectory:

1. The peak speed.
2. The average speed.
3. The average angle change between points.
4. The straightness, calculated as total displacement divided by total distance

travelled. A value of 1 is a perfectly straight trajectory.
5. The time of the day when the alarm occurred. The cosine function is used

to convert the hour of the day to a value between -1 and 1 where -1 is the
middle of the day and 1 is the middle of the night.

The result is a 5-dimensional vector for each trajectory.

5.2 Evaluation

The LTE model will be evaluated in three ways namely inspection, cluster purity
and theft V-measure.

Inspection. We inspect the LTE model by using various techniques to visualise:

– The reconstruction of the autoencoder.
– The embedded space.
– Clustering.



How machine learning can aid South African farmers’ security 9

Cluster Purity. Given N observations, K clusters and C classes, total cluster
purity is defined as:

1

N

K∑
k=1

max
c∈C

{c ∩ k} (9)

Two different purity scores are considered. First, total purity for all classes,
as described in (9). Second, the total purity when only evaluating emergencies
(theft and predation) versus non-emergencies (own-handling and other) since
this is also a valuable distinction.

Homogeneity, Completeness and V-measure for Theft. We are especially
interested in distinguishing theft from other alarms. Therefore, the V-measure
for theft will be evaluated. V-measure is the harmonic mean of homogeneity
and completeness [13]. Homogeneity gives an indication of how homogeneous (or
pure) clusters are whereas completeness gives an indication of the tendency of a
class to belong to the same cluster. Homogeneity, completeness and V-measure
are similar to precision, recall and F-score, respectively. These metrics are derived
for a single class (theft) as follows:

homogeneity = max
k∈K

{
ctheft ∩ k

ntheft,k

}
(10)

completeness = max
k∈K

{
ctheft ∩ k

ntheft

}
(11)

(a) Reconstruction before training.

(b) Reconstruction after training.

Fig. 4: Grey-scale images to show the reconstruction that the autoencoder pro-
duces for five samples (a) before and (b) after training. These samples are not
seen during training. Each row in each image is a channel of the sample as de-
scribed in Section 3.
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V-measure = 2× homogeneity × completeness
homogeneity + completeness

(12)

Note that this way of calculating these metrics for a single class is not the same
as first proposed by [13], but it has the same goal and descriptive value. Theft
V-measure specifically gives an indication of how well we can isolate theft events.

6 Results

6.1 Autoencoder Reconstruction

Although the quality of the reconstruction of the input is important, the ultimate
goal is not to reproduce the input but to embed useful features. After training
for 100 epochs, the mean square error loss of the autoencoder on the validation
and training set is 0.7 and 0.3 respectively. Figure 4 shows the reconstruction
before and after training the model. It is clear that the model is able to learn
useful features that can be used to reconstruct the input.

6.2 UMAP Visualisation

A dimension reduction technique, Uniform Manifold Approximation and Pro-
jection (UMAP) [11], is used to visualise the ten-dimensional embedded space.

Fig. 5: A two-dimensional scatter plot of a UMAP embedding performed on the
ten-dimensional encoded trajectories. The small blue dots are training data while
the validation data is colour coded.
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UMAP allows us to inspect the structure of the higher-dimensional space on a
two-dimensional plot as seen in Figure 5. We can see two major clusters forming,
one on the right with the majority of the own handling trajectories and one on
the left with a medley of predation and theft trajectories.

6.3 Clustering

K-means clustering is performed on the embedding and the resulting clusters are
shown in Figure 6. Three major clusters can be seen. Cluster 2 is an almost pure
own handling cluster. The majority of cluster 3 is predation. Cluster 4 has equal
counts for predation and theft. We also see some almost-empty clusters which
consist of outliers — these are typically due to the obstacles listed in Section
3.3. Although the clustering is not perfect, it still provides valuable information
and shows that distinctions can be made.

6.4 Quantitative Results

The two baseline approaches as described in Section 5.1 are implemented to
produce features for clustering. After K-means (with K = 7) clustering is per-
formed, the metrics as described in Section 5.2 are calculated and documented
in Table 2. As a sanity check, the metrics are also calculated for random cluster
assignment.

Feature engineering performs relatively poorly with similar results to random
assignment. Although purity scores for DTW and LTE are comparable, there is
a large distinction in theft V-measure. We can therefore conclude that LTE is
the superior approach since it outperforms the other approaches in all metrics.
It is also clear that a better distinction can be made between emergencies and
non-emergencies. This distinction is valuable because only emergencies require
a response from the farmer.

Fig. 6: K-means (with K = 7) clustering results. The y-axis shows the counts of
classes and the x-axis shows each cluster.
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Table 2: Quantitative Results (in percentage, %) for LTE, DTW, feature engi-
neering and random assignment. For all the shown metrics, higher is better.

Total
Purity

Emergency
vs Non-

Emergency
Purity

Theft Ho-
mogeneity

Theft Com-
pleteness

Theft
V-Measure

Random Assignment 41.60 57.93 27.99 25.51 26.57
Feature Engineering 43.75 58.52 27.27 25.71 26.47
DTW 56.25 77.84 27.08 37.14 31.33
LTE 59.66 80.11 42.86 51.42 46.75

7 Conclusion

This paper introduces a new application of time series machine learning tech-
niques. Concretely, we propose a convolutional-deconvolutional autoencoder to
produce livestock trajectory embeddings (LTE). LTE is compared to feature en-
gineering and a dynamic time warping (DTW) approach by performing K-means
clustering on extracted features and calculating key metrics. LTE outperforms
the other approaches on all metrics.

Although not perfect, we suggest that our approach is capable of providing
valuable embeddings which can be used for downstream classification. Improving
upstream data quality in terms of sampling frequency should reveal more infor-
mation about a trajectory which should, in turn, improve embeddings. The fact
that events can be distinguished in an unsupervised fashion suggests that invest-
ing in acquiring labels for events might be worthwhile, so that semi-supervised
or supervised techniques can be incorporated in future work.

By utilising the model proposed in this paper, downstream classification
would be able to provide critical information to farmers when they need it most.
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