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Abstract

Modeling voice identity is challenging due to its multifaceted na-
ture. In generative speech systems, identity is often assessed us-
ing automatic speaker verification (ASV) embeddings, designed
for discrimination rather than characterizing identity. This pa-
per investigates which aspects of a voice are captured in such
representations. We find that widely used ASV embeddings
focus mainly on static features like timbre and pitch range, while
neglecting dynamic elements such as thythm. We also identify
confounding factors that compromise speaker similarity mea-
surements and suggest mitigation strategies. To address these
gaps, we propose U3D, a metric that evaluates speakers’ dy-
namic rhythm patterns. This work contributes to the ongoing
challenge of assessing speaker identity consistency in the context
of ever-better voice cloning systems. We publicly release our
code.

Index Terms: speech synthesis, computational paralinguistics

1. Introduction

Generative models that synthesize virtual humans have pro-
gressed tremendously over the last few years. Virtual characters
are expected to possess unique identities that remain consistent
across time. Despite recent progress, this remains a challenge in
visual [1-4] and text-based systems [5, 6]. This paper considers
how identity is measured in generative speech systems. Voice
identity is difficult to define because it spans factors relating to
anatomy, such as pitch range and timbre, as well as behavioral
factors, affected by a speaker’s language, accent, and natural
speaking patterns and rhythm [7, 8]. Yet humans routinely iden-
tify each other under many changing conditions, implying that a
set of measurable markers exists.

Characterizing identity from speech has primarily been stud-
ied for automatic speaker verification (ASV) applications [9-12],
where the goal is to discriminate between speakers. This differs
from modeling a speaker’s identity [13]. For speaker discrimina-
tion, the models encode the minimal set of markers highlighting
the differences between speakers, while a representation useful
for generative tasks should encode all relevant identity markers.
ASV models can therefore decide to ignore subtle speech identity
factors (e.g. pitch patterns, rhythm, and accent) that are crucial
for speaker reproduction.

Nevertheless, discriminative ASV representations have been
shown to correlate with human judgments [14], are success-
fully used to model voice in few-shot speech synthesis sys-
tems [15-18], and can be used to align models [19]. In addi-
tion, these representations are routinely used to measure identity
preservation of synthesis systems in research papers [16, 18-25]
and community challenges [26,27].

In this paper, we examine ASV representations through the

lens of synthesis, highlighting their strengths, limitations, and
implications for speech generation. We begin by reviewing iden-
tity markers in speech and identify metrics used to measure them.
Next, we analyze how current ASV representations capture these
markers. Our findings reveal that ASV embeddings mostly en-
code spectral information like pitch range and timbre, and that
dynamic features are often overlooked.

We then identify confounding factors that can derail speaker
similarity experiments. Specifically, we show that factors such
as file duration, channel noise, and equalization can mistakenly
cause speech from the same speaker to be attributed to different
speakers. To address this, we provide mitigating strategies and
guidelines for experimental protocols and result interpretation.
While we limit our discussion to speech synthesis, our results
have broader implications for speaker verification.

To address the shortcoming that ASV embeddings neglect
dynamic aspects of identity, we propose U3D (Unit Duration
Distribution Distance), a metric to capture speech rhythm pat-
terns. By modeling rhythm based on phonetic content and as a
distribution instead of a statistical moment, we show that U3D
captures rich rhythmic information that goes beyond simple met-
rics like speech rate. U3D models duration over self-supervised
speech units. It, therefore, does not require phonetic annotations,
making it language agnostic and practical for many contexts.
We open-source a framework for voice similarity measurement,
implementing U3D and our prescribed best practices'.

2. Background
2.1. Identity markers in speech

Foundational phonetic research [7, 8] identifies two primary
categories of cues that enable humans to recognize each other:
anatomical and behavioral factors.

Anatomical factors relate primarily to the physical struc-
ture of the vocal apparatus. The morphology, shape, and size
of the vocal tract, along with muscle flexibility, largely define
how a person sounds. While certain anatomical features remain
relatively fixed (such as the dimensions of the nasal cavity), oth-
ers—notably the oral cavity and pharynx—undergo continuous
modification during speech production to modulate phonatory
airflow. These physical characteristics determine the pitch range
of a person and their timbre. Timbre constitutes the distinctive
quality that differentiates one voice from another even when
lexical content and pitch remain constant [28]. Our experiment
in Section 3.2 reveals that timbre and pitch are well represented
in ASV embeddings, indicating that they play a prominent role
in speaker discrimination.

Behavioral factors encompass learned speech patterns and
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habits developed by a speaker. While also influenced by phys-
ical properties [29], these factors relate mainly to the manner
in which the vocal apparatus is used. Behavioral factors in-
clude phoneme inventory and pronunciation habits [30], natural
rhythm [31,32], distinctive phonetic liaisons between words [33],
individualized articulation patterns [34, 35], and speech imped-
iments. These behavioral markers reflect influences such as
age [36], time-period [37], region [30,31], social factors [38,39],
and individual traits, all of which play a role in shaping speaker
identity. Despite extensive research on behavioral identity mark-
ers, it is still unclear how these should be modeled and measured
for speech synthesis applications. In addition, these complex
identity markers are challenging for human evaluators unfamiliar
with the speaker [40,41], limiting the effectiveness of listening
tests in assessing the voice similarity of synthesized speech.
This underscores the need for automated metrics encompassing
factors beyond anatomical characteristics.

2.2. Measuring speaker similarity in synthesis research

Recent years have seen growing interest in synthesis evaluation
and the scrutiny of experimental protocols [42—45]. While most
efforts focus on naturalness and sound quality, some propose
new data and tools for similarity assessments and more [46,47].

There are different ways to report speaker similarity in syn-
thesis papers. Some authors use predictive models to reproduce
human annotations [47—49]. But most often, speaker similarity
is measured by the distance between ASV embeddings, which
has been shown to correlate with human judgment [14]. Some
authors directly report average similarity between genuine and
synthesized speech [16,17,24,25]. However, raw similarity num-
bers are difficult to interpret because their range varies across
ASV representations and they must be put in perspective with
similarities between genuine examples of the same speaker.

This is why many studies report the equal error rate (EER) of
an ASV system comparing synthesized utterances with genuine
utterances [14]. In practice, reporting EER translates into measur-
ing similarity between pairs of synthesized—genuine utterances
and genuine—genuine utterances. Then, a decision threshold
is set to yield equal rates of false acceptances and false rejec-
tions. If synthetic utterances differ significantly from genuine
ones, their similarity scores will be lower, allowing for a deci-
sion threshold that gives perfect separation and a 0% error rate.
Conversely, if synthetic utterances are indistinguishable from
genuine ones, it is impossible to set such a threshold, making the
decision akin to flipping a coin with a 50% error rate.

3. Experiments

While ASV embeddings are widely used for speaker similarity
evaluation in synthesis, very little is known about what they actu-
ally encode and how robust they are. We explore which markers
are represented in some widely used ASV embeddings, and mea-
sure the effect of confounding factors. Finally, we propose a
metric for rhythm that we validate through experimentation.

3.1. Models and datasets

Our goal is not to identify the best ASV technology for speech
synthesis applications, but to make observations on a few repre-
sentative methods. Modern representations rely on neural net-
works that summarize variable length utterances in fixed-length
embedding vectors. The cosine similarity between these vectors
indicates the predicted similarity between speakers.

‘We compare conventional but still widely-used ASV meth-

ods such as GE2E [12] and X-Vectors [9]. GE2E uses a con-
trastive loss to learn discriminative embeddings, while X-Vectors
are the internal representation of a classifier trained on a fi-
nite set of speakers. The more recent ResNet-TDNN [11] and
ECAPA-TDNN [10] models are architectural improvements on
X-Vectors, incorporating residual and skip connections and atten-
tion for pooling. We also include more recent methods relying
on self-supervised learning for feature extraction because they
are increasingly popular and yield state-of-the-art results [50].

We use open-source implementations from Speech-
Brain® [51] for X-Vector, ECAPA-TDNN and ResNet-TDNN,
and Resemble-ai’s implementation of GE2E®. Finally, we use
self-supervised approaches that use WavLM [52] as feature
extractor: WavLM+ECAPA-TDNN, WavLM Large+ECAPA-
TDNN* and WavLM+X-Vector’.

We use the ARCTIC [53] and L2-ARCTIC [54] speech
datasets in all our experiments. ARCTIC comprises recordings
of 18 English speakers reading phonetically balanced prompts.
L2-ARCTIC expands the number of speakers with 24 non-native
English speakers representing a variety of accents. We chose
these datasets for their diversity and recording quality. In the
experiment of Section 3.2, we complement our datasets with the
1172 speakers from the LibriSpeech [55] train-clean-100 and
train-clean-360 subsets, to increase diversity.

3.2. MarKkers captured by ASV embeddings

We start by exploring which identity markers are encoded in ASV
embeddings. We do this by trying to predict handcrafted features
that capture different aspects of identity from the embeddings.
Table 1 summarizes the features and provides an intuition on
what they measure. Anatomical characteristics, such as pitch
and timbre, are captured by mean pitch and harmonic-to-noise
ratio (HNR) and a-ratio. More behavioral and dynamic speech
patterns are measured by speech rate, standard deviation of pitch
and loudness, as well as voiced and unvoiced segment lengths.
We extract speech rate using the method in [59] because it highly
correlates with the ground truth syllable rate. Using REAPER®,
we compute the mean and standard deviation (std) of pitch only
on voiced segments. The other features are extracted using
OpenSmile [60]. Lastly, we include file duration, which should
not be linked to speaker identity.

We extract ASV embeddings for each utterance in Lib-
riSpeech, ARCTIC, and L2-ARCTIC. Taking the embeddings
as input, we train a lasso regressor to predict the features for the
utterance. We also experimented with a non-linear random forest
regressor, which yielded results comparable to those of lasso;
therefore, we report only the lasso results. We remove outliers
using the inter-quartile range (IQR) method and optimized the
hyper-parameters by performing 5-fold cross-validation, making
sure that every speaker belongs only to a single fold. After re-
training the regressor on all data, we predict the value of each
handcrafted feature. Finally, we compute the coefficient of deter-
mination (r?) between the feature values and their predictions.
A perfectly predicted feature yields a score of 1.0 while uncorre-
lated predictions yield a score of 0.0.

Figure 1 shows that the speaker embeddings primarily en-
code static spectral information (mean pitch, HNR, shimmer,

2https://qithub.com/speechbrain/speechbrain

3https://github.com/resemblefai/Resemblyzer
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Table 1: Extracted speech features and a short explanation and intuition on what they measure.

Markers Description

Intuition

Duration Length of the speech example.
Number of syllables per minute.
The average duration of a voiced segment.

The average duration of an unvoiced segment.

Speech rate
Voiced segment length
Unvoiced segment length

This is independent from speaker identity.

Indicates how fast a person speaks.

Indicates how the person elongates vowel-like sounds.
Indicates some pronunciation habits of the speaker.

Mean pitch
Pitch std

Average F in semitones of voiced segments.
Standard deviation of Fj.

Indicates how high or low a person speaks.
An expressive speaker will have a high base pitch deviation.

Mean loudness
Loudness std

The average perceived energy in a speech signal.
Standard deviation of perceived energy.

Mostly indicates of the file normalization level.
Indicates if speaker is expressive.

Shimmer

Harmonics-to-Noise Ratio
(HNR)
a-ratio

Mean amplitude difference between consecutive F( periods.
Energy ratio between harmonic and noise-like components.

Ratio of the energy from 50-1000 Hz and 1-5 kHz.

Voice quality indicator; irregular vocal fold vibrations result in breathi-
ness and can show poor phonation control [56].

Voice quality indicator; high HNR characterizes sonorant and harmonic
voices, while low HNR denotes an asthenic voice and dysphonia [57].
Reflects voice quality; bright voices have more energy in high frequen-
cies as opposed to dark/mellow voices [58].
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Figure 1: The coefficient of determination (12) of feature predic-
tions. A perfect score is 1.0 and uncorrelated predictions yield a
score of 0.0.

a-ratio) reflecting voice quality and frequency range. On the
other hand, the embeddings fail to capture dynamic behavioral
identity markers like speech rate, voiced/unvoiced segment dura-
tions, variations in pitch, and loudness. This limitation means
that embeddings represent only a subset of the speaker charac-
teristics necessary for a comprehensive assessment of identity in
speech synthesis.

While our goal is not to identify the best speaker embedding
to use for identity measurement, we find that X-Vector embed-
dings encode a wider range of markers, including more dynamic
information, than more recent and better-performing embeddings
for the speaker verification task. This agrees with the findings
of [61]. This somewhat surprising result highlights the differ-
ences between speaker verification and speech synthesis, and
calls for a more extensive comparison of ASV embeddings in the
synthesis context. Better-suited identity representations might
even need to be developed.
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Our experiment also shows that embeddings can encode
distracting factors unrelated to identity, such as speech file dura-
tion. We now explore this limitation and its implications in more
detail.

3.3. Robustness of automatic speaker similarity assessment

In this section we demonstrate how ASV-based comparisons can
be compromised by confounding variables, particularly file du-
ration and channel characteristics. We do not want to invalidate
established methodologies, but rather aim to guide researchers
in avoiding potential methodological errors in interpreting exper-
imental results.

Here we measure the EER (see Section 2.2) on the ARC-
TIC and L2-ARCTIC datasets under various conditions. Table
2 reports the average EER with the standard deviation over all
speakers. As reference, we report EER after comparing each
speaker to the other speakers, akin to a speaker verification task.
A perfect ASV embedding would obtain an EER of 0%. As a sec-
ond reference experiment, we consider each speaker individually
against themselves: For each speaker, we randomly distribute
speech files between two groups, the first acting as genuine and
the second acting as synthesized examples. Being from the same
person, both groups should be indistinguishable and EER should
be 50%. Next, instead of randomly distributing the utterances,
we sort them by duration, grouping shorter utterances together
in one group and longer ones in another. We then measure EER
for discriminating between shorter and longer utterances. Since
these are the same utterances spoken by the same speaker, EER
should be 50%.

As expected, control experiments with same speaker utter-
ances yield an average EER of around 50% for all methods, and
EERs between 0% and 5% when comparing different persons.
This validates our protocol and shows that all embeddings ac-
curately discriminate speakers. However, when using the same
utterances but sorted by duration, EER is significantly lower for
all methods. This means that these ASV systems can discrimi-
nate utterances based on file duration, which is not an indicator
of identity. This coincides with the results in Figure 1, showing
that ASV embeddings encode duration. This undesirable be-
havior can derail experiments if the duration of the synthesized
examples is very different from the genuine examples: a syn-
thesis system would under-perform, and comparisons between
systems might not be meaningful. Fortunately, this can be easily
mitigated with careful experimental design that ensures similar
utterance durations. In the case of text-to-speech evaluation, we
recommend generating the same text utterances as the genuine
corpus, taking the usual precaution of not using utterances used



Table 2: Mean and standard deviation of EER across ARCTIC and L2-ARCTIC speakers for different experiments.

Experiment ECAPA-TDNN  ResNet-TDNN +ECXV;X]?}1Y][)NN +‘gé‘$\:_%g§el\] +‘)’(Va\v/e%r X-Vector GE2E

One speaker vs rest 0.00 £ 0.01 0.00 + 0.00 0.00 £ 0.00 0.00 £0.00  0.05+0.03 0.03£0.01 0.02+0.01
Same speaker 0.50+£0.03  0.50 £ 0.02 0.51 £ 0.02 0.50£0.02  0.50£0.03 0.50£0.03 0.50+0.03
Same speaker, short vs long 0.34+£0.04  0.35+0.03 0.32 £ 0.03 0.33+£0.03  0.39+£0.02 0.30+£0.03 0.34+0.03
SNR 40 0.47 £0.03 047 +0.03 0.47 £ 0.03 0.48 £ 0.03 046 £0.04 0.45+0.05 0.42+0.04
SNR 20 0.34£0.06  0.3240.05 0.33 & 0.06 0.384+0.05  0.36+£0.07 0.21£0.07 0.1540.06
SNR 0 0.054+0.04  0.04+0.04 0.05 + 0.03 0.104£0.05  0.06+£0.04 0.01£0.01 0.01+0.01
“+emphasis 0.47 £0.04  0.48+0.03 0.45 £ 0.02 043 +0.03  048+0.03 047+0.04 0.07+0.03
+de-emphasis 0.384£0.05  0.41+0.05 0.37 £ 0.07 0.32+0.06 0.44+0.06 0.28+0.07 0.01+0.01
+emphasis +re-equalization 0.50 £0.02  0.49 & 0.02 0.49 & 0.02 0444004  0.50£0.03 0.50£0.03 0.50 & 0.02
+de-emphasis +re-equalization  0.50 & 0.03  0.50 & 0.02 0.49 + 0.03 0.45+0.05  0.50£0.02 0.49+£0.02 0.50 £ 0.02

during training.

We next investigate channel-related confounding factors,
specifically noise and equalization effects. This is important
for synthesis evaluation as sound quality varies across methods.
While clean, noise-free speech is desirable, quality differences
should not influence speaker similarity measurements. Some
systems produce artifacts that reduce sound quality compared to
authentic speech, while others generate samples that are cleaner
than the enrollment recordings. This latter scenario frequently oc-
curs in voice cloning applications where users record enrollment
samples with consumer-grade equipment. The 2023 Blizzard
Challenge demonstrated this phenomenon, with several competi-
tors producing samples superior to the training material [40].
To assess noise effects, we progressively introduce white noise
to speech samples from each speaker and calculate EER when
comparing identical utterances at varying signal-to-noise ratios
(SNR). The middle section of Table 2 presents the average EER
across speakers.

Similarly, we measure the effect of equalizing files by ap-
plying a popular emphasis and de-emphasis filter defined by
H(z) =1 — az™! with o = 0.97 for emphasis, or its inverse
for de-emphasis. These filters modify the spectral balance of
the signal, without altering the identity perceived by humans.
Results are given in the bottom section of Table 2.

Our experiments on channel noise (Table 2 middle section)
reveal significant variations in EER following perturbation. At
low SNR, all models incorrectly classify noisy samples as dif-
ferent identities from their clean counterparts. While 0 dB SNR
represents extreme degradation, the results demonstrate that
noise significantly impacts similarity scores measured by ASV
systems. This has important implications when comparing sys-
tems with differing output quality, for instance when evaluating
high-performance voice cloning systems using data collected in
uncontrolled environments. We recommend that researchers
conduct SNR assessments on both genuine and synthesized
speech to ensure valid interpretation of the results.

Altering the spectral balance of the recording by applying
equalization (Table 2 bottom section) significantly alters EER for
most methods. For the GE2E implementation that we use, this
even leads to catastrophic failure. Practical synthesis systems, for
various reasons, can color the speech samples, making evaluation
problematic. We suggest to re-equalize the samples from the
evaluated system to get a similar spectral balance as the genuine
samples. As an example, we mitigate tonal imbalance in our
experiment by using a simple equalization matching algorithm.
We start by estimating the power spectral densities of the genuine
audio samples S (f) as well as the emphasized/de-emphasized
audio samples Sz (f). We compute the frequency response
of the corrective equalization as |G(f)|?> = Sr+(f)/Szz(f)-
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Then, we obtain a 16-band FIR graphic equalizer filter [62],
matching this frequency response. This filter is applied to the
emphasized/de-emphasized samples to re-equalize, ensuring that
it adopts the tonal characteristics of the genuine examples. In
the last two rows of Table 2, we see that this brings EER back to
the expected 50%.

3.4. Measuring rhythm

We have shown in Section 3.2 that ASV-based similarity eval-
uations only capture a subset of identity markers. They are
particularly poor at measuring dynamic features. As a first step
towards a better characterization of behavioral identity, we intro-
duce U3D (Unit Duration Distribution Distance), a novel metric
for modeling rhythm and phoneme duration. First, we argue that
a coarse approach to measuring rhythm, based on speaking rate
or mean voiced/unvoiced segment length, is insufficient for dif-
ferentiating dynamic speech patterns across speakers To illustrate
this, Figure 2 shows the distributions of ground-truth syllable rate
and mean voiced/unvoiced segment length for the L2-ARCTIC
dataset (which includes speakers from diverse origins). In many
cases, adjacent speaker pairs do not show statistically significant
differences in syllable rate (top). Moreover, speakers with simi-
lar syllable rates can exhibit markedly different lengths of voiced
segments (bottom), suggesting that natural rhythm involves more
complexity than speech rate alone can capture. These findings
underscore the need for a more sophisticated evaluation method
that accounts for content and is more descriptive than first or
second statistical moments.

We propose comparing the duration distributions of differ-
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Figure 2: Ground-truth syllable rate and voiced segment length
for all speaker in L2-ARCTIC. The syllable rates are similar
between many speakers, and voiced segment length (bottom) is
not strongly correlated with speech rate (top).
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ent phoneme types and silence to capture finer-grained aspects

of thythm. While phoneme-duration analysis requires a forced

aligner—a tool not universally available across languages—our

U3D metric offers a more accessible alternative. By comput-

ing duration distributions over unsupervised speech unit groups

(obtained from an SSL model), U3D provides a refined character-

ization of rhythm, modeling duration variations across different

sound and phoneme types. This method offers researchers a

robust, language-agnostic technique for quantifying the subtle

variations in speakers’ temporal speech patterns.

U3D is computed in three steps:

Discover phoneme-like groups of speech units: Follow-
ing [59], we use agglomerative hierarchical clustering over
speech units [23] extracted from a HuBERT model’. Differ-
ent branches in the resulting dendrogram correspond with broad
phoneme-like groups. For example, [59] show that the three
main clusters map to sonorants, obstruents, and silences. Refer
to their paper for a visualization.

Segment speech and compute duration distributions: First,

we extract speech units from all speech utterances. Then, we

partition them into sequences of contiguous segments using
the score function from [59]. Finally, we record the segment
durations to get a distribution for each phoneme-like group.

Measure distance between distributions: For each group, we

compute the Wasserstein distance between the duration distri-

butions of the synthesized and genuine speech. These distances
can be reported separately for fine-grained analysis, or averaged
to a give a single number for comparison.

To validate our method, we first measure duration distri-
butions using ground-truth phoneme and silence segments ob-
tained through forced alignment®. We categorize phonemes
into five groups: vowels, approximants, nasals, fricatives, and
stops. Then, we compute average distances across ARCTIC and
L2-ARCTIC speakers under three scenarios:

1. Same: Compare distances between two randomly split subsets
of a single speaker. This reflects the lower bound of our metric,
where we expect the smallest distances.

2. Nearest: Calculate distance between each speaker and their
closest counterpart by syllable rate. This setting tests whether
our metric can distinguish between speakers undistinguishable
with speech rate.

3. Random: Report distance between random speaker pairs.

Table 3: Average Wasserstein distance based on forced align-
ments and unsupervised speech units (U3D) for the same speaker,
between a speaker and their nearest neighbor by syllable rate,
and between random pairs of speakers.

approx. fric. nasal stop vowel sil. Avg.
Forced Aligned
Same 1.7 1.5 1.7 1.3 1.4 7.3 2.48
Nearest 8.6 8.5 7.4 7.4 7.6 70.7 18.37
Random 11.7 13.9 129 11.5 15.0 81.6 2443
Unsupervised (U3D)
Same 2.3 1.0 1.5 1.2 1.0 59 2.15
Nearest 11.2 42 5.9 12.0 52 71.9 18.40
Random 15.4 7.0 10.7 15.6 9.1 714 21.53

The results in the top section of Table 3 show that rhythm
distances are significantly larger between different speakers, even

7https ://github.com/bshall/urhythmic
8https ://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

12

those with similar speech rates. Our approach therefore captures
meaningful differences between speakers that cannot be reduced
to speech rate. We subsequently (bottom section) replicate the
experiment using unsupervised speech unit groups, confirming
our method does not have to rely on forced alignment. This
provides a flexible, language-agnostic technique for quantifying
subtle variations in speakers’ temporal speech patterns.

4. Conclusion

In this paper, we explored the limitations of ASV embeddings
in the context of assessing speaker identity in speech synthe-
sis. We showed that ASV embeddings mainly encode speech
identity markers relating to anatomy (e.g. pitch range and tim-
bre), and fail to capture time-dependent behavioral identity cues.
Next, we explored the robustness of the embedding to distraction
factors such as sample duration, noise level, and equalization.
We provide recommendations for experimental protocol design
and meaningful result interpretation. Finally, to address the
shortcoming of ASV-based comparisons, we proposed U3D, a
metric that better characterizes dynamic aspects of a identity by
measuring rhythm. Future work includes additional metrics for
behavioral markers, an extensive comparison of speaker embed-
dings, novel representations designed specifically for synthesis
evaluation, and an extension of the discussion beyond neutral
speech.
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