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ABSTRACT
Identifying and grouping the frequently occurring word-like pat-

terns from raw acoustic waveforms is an important task in the zero
resource speech processing. Embedded segmental K-means (ES-
KMeans) discovers both the word boundaries and the word types
from raw data. Starting from an initial set of subword boundaries, the
ES-Kmeans iteratively eliminates some of the boundaries to arrive
at frequently occurring longer word patterns. Notice that the initial
word boundaries will not be adjusted during the process. As a result,
the performance of the ES-Kmeans critically depends on the initial
subword boundaries. Originally, syllable boundaries were used to
initialize ES-Kmeans. In this paper, we propose to use a phoneme
segmentation method that produces boundaries closer to true bound-
aries for ES-KMeans initialization. The use of shorter units increases
the number of initial boundaries which leads to a significant incre-
ment in the computational complexity. To reduce the computational
cost, we extract compact lower dimensional embeddings from an
auto-encoder. The proposed algorithm is benchmarked on Zero Re-
source 2017 challenge, which consists of 70 hours of unlabeled data
across three languages, viz. English, French, and Mandarin. The
proposed algorithm outperforms the baseline system without any
language-specific parameter tuning.

Index Terms— Zero Resource speech processing, unsupervised
learning, spoken term discovery, word segmentation

1. INTRODUCTION

Speech technologies rely on large corpora of transcribed speech au-
dio data, pronunciation dictionaries and texts data for language mod-
eling. Transcribing speech requires manual expertise and thus is very
expensive and time-consuming. Zero resource speech technologies
aim to develop unsupervised methods to discover the linguistic struc-
ture and lexicon directly from audio [1, 2]. These methods are cru-
cial for extending speech technologies to the new languages with
limited resources. Infants acquire their native languages in a largely
unsupervised way [3] and developing speech technologies in zero
resource settings may shed light upon speech inquisition process in
children. Zero resource speech processing has been used for several
applications including keyword spotting [4], unsupervised represen-
tation learning [5, 6, 7], topic discovery from untranscribed utter-
ances [8], unsupervised acoustic unit modelling [7, 9, 10, 11, 12, 13]
and language identification [14].

Unsupervised term discovery [7, 13, 15], which aims to find the
repeatedly occurring word like patterns from the untranscribed audio
data, is an important task in zero resource speech processing [1, 2].
Initial approaches [16] focused on finding isolated segments cover-
ing only a fraction of the speech data. Recent methods segment and

cluster the entire speech data into word-like units [7, 17, 18, 19].
These full coverage system can be used to develop downstream ap-
plications like query-by-example search and speech indexing in a
manner similar to when the supervised transcriptions are available
[20]. This work focuses on developing a full coverage term discov-
ery system.

Embedded segmental K-means (ES-KMeans) [18] model jointly
optimizes both word boundaries and labels by altering between seg-
mentation and clustering. ES-KMeans uses an acoustic word em-
bedding method which uniformly downsamples the variable length
segment to map it to a fixed dimensional vector. These fixed dimen-
sional embeddings are used for clustering the speech segments. The
idea is that a good embedding function would preserve the acoustic
properties of the segments and acoustically similar segments would
lie close together in fixed dimensional space.

ES-KMeans requires an initial subword boundary detection
method that gives the location of probable word boundaries and
removes unlikely word boundaries. The algorithm then clusters
the initial segments and eliminates some of the initial boundaries
based on the current word model (cluster centers). The final sys-
tem performance depends heavily upon the quality of the initial
boundaries. We propose to use unsupervised phoneme segmentation
algorithm which produces boundaries that deviate less from the true
boundaries as compared to the originally used syllable segmentation
method [21]. The use of shorter acoustic felicitates finer refinements
while searching for words. Both these reason contribute to higher
system performance. A kernel Gram matrix based segmentation
method is used for obtaining the initial phoneme boundaries in an
unsupervised manner [7, 22]. A word would contain a larger number
of phonemes than syllables, and this increases the number of pos-
sible combinations to check. To reduce the run time of the model,
we use a non-linear dimensionality reduction method to map the
finite dimensional input vector to a compact representation. It al-
lows segments to be efficiently compared directly in the embedding
space. The learned embeddings show substantial improvements in
the run-time.

The effectiveness of the proposed approach is demonstrated on
zero Resource speech challenge 2017. The proposed algorithm can
scale to large datasets of size 45 hours. We conduct two sets of
experiments. First, we analyze the impact of using the phoneme
boundaries as pre-segmentation for ES-KMeans as opposed to ini-
tially used syllable boundaries. We also perform additional experi-
ment to quantify the impact of initial segmentation on the final sys-
tem performance. Second, we examine how the dimensionality of
the autoencoder embedding affects the speed and accuracy of the
ES-KMeans relative to MFCC based embeddings. The learned em-
beddings give similar performance to MFCC features while giving
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10-15 times speed up in the runtime.

2. EMBEDDED SEGMENTAL K-MEANS

Given an utterance represented by the sequence of feature vectors
X = (x1,x2, ...,xN), Where xi is the d dimensional feature vec-
tor, and N is the total number of frames, we aim to divide the utter-
ance into word like segments and cluster these segments into a finite
number of word types. ES-KMeans estimates both the segmentation
and the cluster assignments. The algorithm uses a two-step iterative
optimization procedure that successively optimizes word boundaries
and the clustering.

The ES-KMeans algorithm begins with an initial segmentation
method that divides the data into various variable length segments.
An acoustic word embedding method [23, 24, 25] fe maps the vari-
able length segments to fixed dimensional vector i.e. segment xt1:t2

is mapped to a vector yi = fe(xt1:t2). Using the segment bound-
aries, all the segments in the data are embedded and are represented
by a set of vectors Y = {yi}Mi=1. The segmentations for the data
set are represented by Q = {qi}Si , where S is the number of utter-
ances and qi indicates the boundaries for utterance i. Y(Q) denotes
the embeddings under the current segmentation. Now an objective
function that depends on both segmentation and clustering assign-
ments in required. Standard K-means [26] objective can extended
to include both the segmentation Q and the cluster assignments z
i.e. min

Q,z

∑K
c=1

∑
y∈Yc∩Y(Q) ‖y − µc‖2, where Yc ∩ Y(Q) are the

segments belonging to cluster c under segmentation Q. But this ob-
jective function would favor longer segments, i.e., it will try to put
entire utterance into a single segment to minimize the number of
terms in the summation. Any boundary insertion would increase the
number of terms in the summation and worsen the objective func-
tion. So we penalize large segments by weighting them by their
duration. The objective function now becomes

min
Q,z

K∑
c=1

∑
x∈Yc∩Y(Q)

len(y)‖y − µc‖2 (1)

Where len(y) is the number of frames in the segment which is
represented by the embedding y. There is an additional parameter
which controls the minimum length of the segment. The algorithm
then freezes the segments boundaries to obtain the cluster assign-
ments that minimize the objective function. Given the fixed dimen-
sional representations of the segments, any standard clustering algo-
rithm (e.g., K-Means) can be used to obtain the cluster assignments
z. A dynamic programming algorithm then updates the word bound-
aries Q based on the current cluster centers and assignments z. The
algorithm moves back and forth between optimizing the segmenta-
tion Q and cluster assignments z until some convergence criteria is
reached.

3. INITIAL PHONETIC SEGMENTATION

The main idea behind the initial segmentation algorithm is that the
frames from the same segment show higher degrees of similarity
than those from different segments. A Gaussian kernel [27] is used
for computing similarity between every pair of feature vectors. The
kernel Gram matrix is computed as

G(i, j) = exp

(
−||xi − xj||2

h

)
, 1 ≤ i, j ≤ N (2)

where xi, xj are two feature vectors, ||.|| denotes the Euclidean
norm of a vector and h controls the width of the Gaussian kernel. 39-
dimensional Mel-frequency cepstral coefficients are used for com-
puting the Gram matrix G. The feature vectors taken from the same
segment give rise to the block diagonal structure of the kernel Gram
matrix. The speech segmentation task is viewed as identifying the
square patches in the Gram matrix.

To identify the segment boundaries from the Gram matrix, a
temporal neighbourhood criterion is used. Let ε-neighbourhood for
the ith frame xi be the set of all the frames in the utterance whose
distance to xi is less than a predefined threshold ε. As the frame
from the same segment as that of xi would be acoustically similar to
xi; they should also belong to the ε-neighbourhood for the ith frame.
All the immediate frames after the xi that fall in ε-neighbourhood for
the ith frame are referred to as temporally reachable frames from xi.
A segment can only contain consecutive frames so the boundary of
the segment containing xi frame can be located by finding the first
temporally unreachable frame from xi. Relying on just one frame
for boundary detection might lead to spurious boundaries. So, we
check for τ consecutive points being unreachable from xi for de-
tecting the segment boundaries. However, a larger value of τ would
result in missed detection, and a smaller value would result in false
alarms. We use a value of τ = 3 for boundary detection. The mini-
mum and maximum possible acoustic segment lengths are restricted
to 20 ms and 500 ms, respectively.

All the frames predict their respective endpoints and all the
frames from the same segment would predict the same or nearby
frames as endpoints. For each frame, we keep track of the number
of frames that predicted it as their endpoint. The frames with a
higher count than their adjacent frames are the final endpoints. The
choice of ε affects the segmentation performance. Different seg-
ments exhibit varying degrees of similarity, e.g., voiced segments
are generally more similar than the unvoiced segments. An adaptive
ε that adjusts automatically according to the acoustic properties of
the segment is required. The ε is set to be the running mean of the
segment and once a boundary is detected the ε is reset.

4. EXPERIMENTAL EVALUATION

We use Zero Resource speech 2017 challenge for evaluating the per-
formance of the proposed approach. The challenge aims to measure
the robustness of the unsupervised term discovery systems across
speakers and languages. The 2017 challenge dataset consists of
5 languages and contains more than 100 hours of data. The vast
amount of data ensures that the term discovery systems are scalable
to large speech corpora. Three languages English, French, and Man-
darin are released along with the term discovery evaluation system
for each of them. The system hyper-parameters should be optimized
such that the systems generalize well across languages.

The evaluation kit uses various well-established metrics to quan-
tify the system performance [28]. All the metrics assumes the avail-
ability of a time-aligned transcription of the speech data. Normal-
ized edit distance (NED) measures the differences in the phoneme
sequences of a word class, while the coverage (Cov) measures the
fraction of the data covered by the discovered word like units. The
token recall is the probability that a gold word (manual word tran-
scription) token is found in obtained word classes. Token precision
is the probability that a discovered word token would match a gold
word token. A similar definition is used for calculation of type per-
formance. The metric ’type’ measures the correspondence between
the discovered word and the true words in the data. The segmenta-
tion measures the quality of the boundaries of the identified word-
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Embeedings NLP type token boundary speed-up
NED Cov P R F P R F P R F

MFCC 88.4 117.2 11.2 13.1 12.1 11.3 9.9 10.6 58.4 52.8 55.5 1
Dim 20 87.2 117.2 11.5 13.5 12.4 11.5 10.0 10.7 58.9 52.6 55.6 10.3
Dim 15 96.4 117.2 10.4 10.2 10.3 10.6 7.2 8.6 64.3 47.9 54.9 13.3
Dim 10 89.4 117.2 11.0 12.2 11.5 11.3 9.2 10.1 60.4 51.4 55.6 15.4

Table 1: Effect of autoencoder bottleneck dimensionality on the final performance and run-time on Mandarin

like units with the manual word boundaries.

4.1. Compact acoustic embeddings

ES-KMeans relies on a simple downsampling based method for
getting the fixed dimensional embedding. Uniform downsam-
pling is achieved by dividing the segment into a fixed number of
sub-segments. The average vectors of all these sub-segments are
concatenated to obtain the final embedding. Uniform downsam-
pling gives finite dimensional embeddings, but they are typically
high dimensional, e.g., downsampling a segment into ten vectors
with 39-dimensional MFCC as the input would result in a 390-
dimensional feature vector. The use of phoneme for initializing ES-
KMeans increases the number of potential word endpoints that the
algorithm has to consider. Both these, high dimensional input and
large number potential endpoints, reasons contribute to a significant
increase in the computational cost of the algorithm. As ES-KMeans
is agnostic to the input features, so we focus on learning a compact
representation that can reduce the runtime without affecting the sys-
tem performance. Here, we use a stacked autoencoder to project the
finite dimensional embedding obtained using downsampling into a
much smaller dimension. The autoencoder networks are data-driven
and have been used for representation learning [29]. The bottleneck
features extracted from autoencoders were shown to improve the
performance of the speech systems[5, 30]. The autoencoder consists
of two parts: an encoder which takes the downsampled segment as
input and encodes it into a much smaller dimension, typically 10-20
and a decoder which tries to reconstruct the input from the encoded
representation. The autoencoder tries to minimize the difference
between the input and the reconstructed version of the input. The
size the encoding dimension is a crucial parameter, it affects both the
runtime and the final system performance. The smaller the encoding
dimension, the lesser the run time of the algorithm but with the
decrease in the size encoding dimension the reconstruction loss in-
creases. It decreases the quality of the representations which lowers
the final system performance. The segments are uniformly down-
sampled to obtain finite-dimensional vectors. We use these vectors
as input while training the autoencoder. We use 80% of the data
as training set and the remaining 20% as the validation set. Table
1 summarizes the term discovery performance with varying bottle-
neck dimension. For all the languages, the embedding dimension
is fixed to 20. We can extract embeddings for originally used sub-
words, syllables, as well and reduce the run-time of the algorithm.
These compact embeddings make the ES-KMeans scaleable to huge
speech datasets and reduce the processing time of the algorithm.

4.2. Comparison of syllable and Phoneme initialization

The ES-Kmeans selects the optimal boundary from the set of initial
boundaries. The discovered boundaries should be as close as pos-
sible, ideally coincide, to the true word boundaries. Figure 1, com-
pares the boundaries discovered by the syllable and the phoneme

segmentation algorithm. The phonetic boundaries are closer to true
word boundaries. The quality of the acoustic embeddings depends
on the segmentation. A poor segmentation would produce lower
quality embeddings which dampen the performance of the clustering
step. The subsequent segmentation update depends on the clustering.
So the quality of the finally discovered words would depend on the
initial segmentation. To measure the impact of the initial segmen-
tation on the final performance, we conducted the following exper-
iment. We measured the initial segmentation performance w.r.t true
boundaries and the final type and token F-scores obtained by the sys-
tem. As evident from Table 2, for all three languages there is a direct
correlation between the initial word boundary performance and the
final type/token accuracy. For Mandarin, the phoneme segmenta-
tion achieves a higher F-score 43.9 than the syllable-based segmen-
tation 39.9 which is reflected in higher type/token F-score for the
phoneme-based method. For English, on the other hand, the sylla-
ble segmentation has better initial segmentation performance which
leads to higher type/token F-score for the syllable-based method.

Fig. 1: Comparison of the initial boundaries obtained using various
algorithms on Mandarin dataset. The phonetic boundaries, the sylla-
ble boundaries and the true word boundaries are shown Red, Black
and Green respectively. The figure is best viewed in color.

Language P R F type (F) Token (F)
Mandarin (phn) 29.3 87.3 43.9 8.8 8.7

syl 34.3 47.7 39.9 3.1 2.9
French (phn) 21.6 69.8 33.0 5.5 5.9

syl 20.5 29.8 24.3 4.2 3.7
English (phn) 22.8 71.4 34.6 6.1 6.2

syl 33.0 46.4 38.6 11.1 13.5

Table 2: The initial segmentation performance and the quality of the
finally discovered words

Regardless of the accuracy of the discovered boundaries both the
methods produce some boundaries that deviate from the true bound-
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Language System NLP type token boundary
NED Cov P R F P R F P R F

English Baseline 30.7 2.9 4.5 0.1 0.2 4.0 0.1 0.1 37.5 0.9 1.8
(45 hours) ES-KMeans 72.6 100 8.3 16.7 11.1 13.0 14.1 13.5 51.0 54.4 52.7

Proposed 72.2 100.9 4.5 9.4 6.1 5.0 8.2 6.2 26.4 41.2 32.2
French Baseline 25.4 1.6 6.9 0.2 0.3 5.2 0.1 0.1 30.9 0.6 1.1

(24 hours) ES-KMeans 67.3 97.2 3.1 6.3 4.2 3.5 3.9 3.7 37.8 41.6 39.6
Proposed 68.1 97.5 4.2 7.9 5.5 4.8 7.6 5.9 25.4 38.4 30.6

Mandarin Baseline 30.7 2.9 4.5 0.1 0.2 4.0 0.1 0.1 37.5 0.9 1.8
(2.5 hours) ES-KMeans 88.1 100 2.5 4.1 3.1 2.5 3.4 2.9 36.5 47.1 41.1

Proposed 80.0 117.5 7.7 10.4 8.8 6.9 11.5 8.7 43.8 66.8 52.9

Table 3: Performance of the baseline system, syllable based ES-KMeans and the proposed phoneme based ES-KMeans on the three languages
of Zero Resource Speech Challenge 2017

aries. The shorter units, phonemes, allow finer adjustments while
discovering words and find words that are closet to the true words.
We measure the deviation between the boundaries of the finally dis-
covered words from both segmentation methods and the boundaries
of the nearest true words. The word discovered using phoneme seg-
mentation diverge much less from the true boundaries as compared
to syllable based method, Figure 2. More than half the discovered
words using phoneme segmentation have boundaries within 10ms of
true word.

Fig. 2: The deviation of the final word boundaries, obtained us-
ing phoneme and syllable initial segmentation, from the true word
boundaries on Mandarin dataset.

4.3. Zero Resource 2017: Full system performance

For each of the languages, the same set of hyper-parameters are used
for term discovery. System performance varies significantly across
languages because the exact same system is used across languages.
The optimal set of parameters might be different across languages.
As evident from the table 3, our algorithm performs well across lan-
guages. The baseline system [16] finds high precision isolated seg-
ments. This high precision is achieved by discarded a lot of the
discovered segments as background noise. This results in very low
coverage. The baseline system performs better only terms of NED
which is computed only on the discovered patterns. We, on the other
hand, cover the whole data which results in the higher word bound-
ary, word token, and type performance. The words discovered by our
algorithm are closer to true words (type F-score) for all the languages
as compared to the baseline approach. The choice of initial segmen-
tation plays an important role on the system performance (see section

4.2 for details) . The syllable initialized ES-KMeans performs better
on English, whereas the phoneme initialized method performs very
well on Mandarin. For French, the phoneme-based method achieves
better word token, type F-scores. We conducted a set of experiments
with different parameters (e.g varying minimum word length) across
languages. We observed that the best performance parameters differ
for languages. The system that worked well for all the languages
results are used for comparison with other existing methods.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a new unsupervised phoneme based initializa-
tion method for ES-KMeans. The phoneme boundaries are closer to
true boundaries which leads to increment in the system performance.
We propose to use a dimensionality reduction method to tackle the
computational needs associated with the use of shorter sub-word
units like phonemes. The proposed method significantly outper-
forms the baseline method. The dimensionality reduction method
can be used with any input features. The learned compact embed-
dings are 10-15 times faster than the MFCC embeddings while giv-
ing the same performance. Faster methods would allow us to do de-
tailed experiment with parameters and come up with the optimal set
of parameters. We also established a correlation between the initial
segmentation performance and the final term discovery performance.
In future, we would focus on improving the quality of initial sub-
word boundaries. The difference in performance across languages
(for both syllable and phoneme-based methods) might be due to the
fact that different languages have different word length distribution
and we are using a fixed minimum word length across languages.
In future, our focus would be on an automatic estimation of system
parameters for a language in an unsupervised manner. This would
allow us to develop the best system for a language instead of a sys-
tem that works reasonably well across all the languages.
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