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Abstract—Codec-based text-to-speech (TTS) models have shown
impressive quality with zero-shot voice cloning abilities. However,
they often struggle with more expressive references or complex text
inputs. We present MARS6, a robust encoder-decoder transformer
for rapid, expressive TTS. MARS6 is built on recent improvements
in spoken language modelling. Utilizing a hierarchical setup for its
decoder, new speech tokens are processed at a rate of only 12 Hz,
enabling efficient modelling of long-form text while retaining
reconstruction quality. We combine several recent training and
inference techniques to reduce repetitive generation and improve
output stability and quality. This enables the 70M-parameter
MARS6 to achieve similar performance to models many times
larger. We show this in objective and subjective evaluations,
comparing TTS output quality and reference speaker cloning
ability. Project page: https://camb-ai.github.io/mars6-turbo/

Index Terms—text-to-speech, speech synthesis, voice cloning

I. INTRODUCTION

Text-to-speech (TTS) systems have improved many-fold in

recent years, showcasing new capabilities in speaker cloning

cability and naturalness [1]–[3]. One promising area in TTS

is spoken language models (SLMs) [4], where a neural audio

codec converts speech into a sequence of discrete tokens. Like

text language models, SLMs are trained to predict the next

discrete token autoregressively, typically using a transformer-

based architecture. But most prior SLM-based TTS systems

exhibit a key limitation – they are unstable [5], [6]. When the

reference audio or text is complex or out-of-domain, SLMs

often perform poorly compared other TTS methodologies.

While there have been several methods proposed to address

such limitations, they are typically considered in isolation (e.g.

repetition aware sampling [2]), or they drastically increase

the runtime (e.g. multiple sampling [2], [7]). To this end, we

propose MARS6 – a 70M parameter SLM for robust, rapid and

expressive TTS. We combine several recent techniques, and

propose some new techniques from outside the TTS domain

(e.g. odds ratio preference optimization [8] and a new top-p

fallback sampling mechanism). MARS6 consists of an encoder-

decoder transformer, and combines a hierarchical speech codec

with a hierarchical decoder architecture to process speech

tokens at a rate of 12 Hz. Together with the aforementioned

inference techniques, this makes MARS6 a highly robust and

capable TTS model. It is also a showcase for a ‘bag of tricks’

that we introduce for SLM-based TTS.

†This author is with E&E Engineering, Stellenbosch University, South Africa.
All contributions were made in their capacity as an advisor to Camb.ai Inc.

For our experiments, we construct a difficult in-the-wild

TTS evaluation set using the expressive EARS dataset [9]. We

compare MARS6 against prior diffusion- and autoregressive-

based TTS models using objective and subjective evaluations.

MARS6 performs competitively, even against models many

times its size. When used with voice cloning based on a snippet

of reference audio, MARS6 captures the target speaker identity

closely, surpassing prior models in subjective speaker similarity

evaluations. Our main contribution is to demonstrate that we

can combine several recently proposed techniques with new

techniques proposed herein during model design, training, and

inference, to stabilize outputs and yield a more robust SLM-

based TTS system. Demo, samples, code, and checkpoints:

https://camb-ai.github.io/mars6-turbo/.

II. RELATED WORK

Within SLMs, there are broadly three ways to approach

speech tokenization. The first is to tokenize speech using

acoustic tokens at a fixed sample rate, as done in EnCodec

and DAC [10], [11]. The second is to mix acoustic and

semantic tokens using two different quantizers [12], e.g. using

clustered HuBERT features for semantic and EnCodec for

acoustic tokens. The third, which we explore here, is that of

hierarchical acoustic codecs, such as SNAC [13]. These codecs

quantize speech into acoustic tokens in different codebooks,

each with its own sampling rate. This makes lower codebooks

more ‘coarse’, and higher sample-rate codebooks ‘fine’. The

progenitor SLM TTS model, VALL-E, and its successors [2],

[4], [6], uses an autoregressive transformer to predict the most

coarse acoustic codebook, and a non-autoregressive model to

predict the remaining codebook values.

Despite success, VALL-E and its descendants often suffer

from stability issues. Several studies have tried to address

this [14], [15], e.g. by adding linguistic and phonemic con-

straints to improve coherence between the output speech and the

given input text [16]. But most of these improvements require

phoneme alignments during training. The ‘bag-of-tricks’ we

introduce in this paper does not require such resources.

III. MARS6

Fig. 1 shows the MARS6 model, which follows an encoder-

decoder architecture. For zero-shot speaker cloning, the encoder

takes in reference speaker embeddings together with the target

text. The decoder is hierarchical and made of two components:

a local and global decoder, similar to the proposal of [17]. TheIC
A

SS
P 

20
25

 - 
20

25
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-6
87

4-
1/

25
/$

31
.0

0 
©

20
25

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

96
60

.2
02

5.
10

89
08

38

Authorized licensed use limited to: Stellenbosch University. Downloaded on September 25,2025 at 07:15:18 UTC from IEEE Xplore.  Restrictions apply. 



Encoder Global decoder

...

Local decoder

...

text
embeddings

speaker
embeddings acoustic tokens

patch embedding

...

cross-attention

Fig. 1. MARS6 is an encoder-decoder transformer. The encoder converts
a speaker embedding and sequence of text embeddings to latent vectors for
cross-attention in the global decoder. The hierarchical autoregressive decoder
has two parts: The global decoder produces new latent vectors at a low sample
rate, where each vector is autoregressively decoded to acoustic tokens using a
smaller local decoder model. The entire patch of acoustic tokens then forms
the next input vector to the global decoder through a patch embedding.

global decoder takes input acoustic features in patches, and its

output is fed into the local decoder to autoregressively predict

all acoustic tokens for the next patch. Details are given next.1

A. Encoder and input representation

The encoder is a non-causal transformer encoder using

Mish activations [18] with sinusoidal positional embeddings,

similar to [19]. Its input sequence consists of two parts.

First, to clone the target speaker, we compute a speaker

embedding using a pretrained speaker verification model and

a secondary embedding using CLAP [20]. The former, being

trained mostly on non-emotive speech, gives a good base

speaker representation. But, for expressive references where

the speaker verifier’s embeddings are less meaningful, the more

broadly trained (but less speaker-specific) CLAP embedding is

useful. These two vectors are mapped to the dimension of the

transformer using a projection layer, and then joined along the

sequence length (‘speaker embeddings’ in Fig. 1). Second is

the sequence of text embeddings corresponding to the desired

text being spoken (‘text embeddings’ in Fig. 1). To reduce the

token count and improve speed, the text is tokenized using

byte-pair encoding (BPE) [21].

To improve reference coherence and output stability, we

adapt a lesson from [22]. We give the encoder a way to learn

when an output should be high fidelity (e.g. 48 kHz audio

from VCTK [23] downsampled to the 24 kHz codec sampling

rate) or lower fidelity (e.g. upsampled 16 kHz audiobook data).

To indicate the target quality to the encoder, we prepend the

original sample rate to the text, e.g. for 16 kHz, “Mister . . . ”

becomes “[16000] Mister . . . ”.

B. Global decoder

MARS6 operates on hierarchical acoustic tokens from the

SNAC acoustic model [13]. SNAC encodes speech into discrete

sequences using residual vector quantization with codebooks

at different sampling rates, representing different levels in a

hierarchy, where earlier codebooks are sampled less frequently.

For MARS6 we use the 3-codebook SNAC [13], with codebook

sample rates of 12 (L0), 24 (L1), and 48 Hz (L2).

1Mars is the Roman god of war. It is also the name of a chocolate bar first
produced in 1932. MARS6 was our sixth internal model version.

Like the encoder, this decoder uses Mish activations and

sinusoidal positional embeddings. The global decoder takes

patches of acoustic tokens from SNAC at 12 Hz, whereby all

codebook tokens generated within 1

12
s are flattened and fed

through a patch embedding [17] to yield a 12 Hz input vector

sequence as shown in Fig. 1. This corresponds to a patch size

of seven, since for every 1

12
s, there is one token from the

12 Hz L0 codebook, two from the 24 Hz L1 codebook, and

four from the 48 Hz L2 codebook.

C. Local decoder

The global decoder’s output must be converted to the full

hierarchical codec tokens to vocode the output speech. Each

output vector from the global decoder is fed as the first input

vector to the local decoder. As shown in Fig. 1, the local

decoder then autoregressively predicts each codec token for all

codebooks for the current patch in a flattened way, predicting

L0, then two L1 tokens, then the last four L2 codebook tokens.

The local decoder is also a causal autoregressive transformer.

But unlike the encoder and global decoder, it always operates

on a fixed sequence length of seven. So we use fixed, learnt

positional embeddings instead of sinusoidal embeddings.

D. Training

The model is trained end-to-end with a standard cross-

entropy loss to predict the next acoustic token. Speaker

embeddings are computed from the ground truth audio during

training, while during inference they are computed from a

desired reference speaker. The local decoder is applied in

parallel to the global decoder outputs during training and

autoregressively during inference. During training, an end-

of-sequence token is appended to the acoustic tokens of the

utterance, which the local encoder is trained to predict.

IV. INFERENCE AND FINE-TUNING TECHNIQUES

MARS6 is fast and small because most of its parameters

operatore on only a 12 Hz sequence in the global decoder. The

shorter sequence can also improve stability. But on its own, this

new architecture does not solve the SLM-robustness problem.

Below we introduce and incorporate a ‘bag of tricks’ for

inference and fine-tuning to improve stability and performance.

A. Fine-tuning setup

We split model training into two parts: pretraining and fine-

tuning. Pretraining involves next-token prediction, as described

earlier. We then fine-tune the model using a curated high-quality

subset of the training data.

For fine-tuning, we combine odds ratio preference optimiza-

tion (ORPO) [8] and reverse inference optimization (RIO) [5].

First, we compute the pretraining model predictions on arbitrary

text using reference waveforms from a high quality subset of

the training data. We then feed these outputs back to MARS6

as references, with the transcript of the original reference, and

predict the original reference audio in a cyclic way, as in [5].

We then rank the cyclic outputs based on character error rate

and UTMOS [24], and select the worst performing outputs as
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‘rejected’ samples, and the corresponding ground truth audio

as ‘chosen’ samples for ORPO. While not precisely the same

as either the original ORPO (where both chosen and rejected

samples come from model predictions) or RIO (where both the

best and worst-performing cyclic outputs are used), we found

this setup to yield the best results in preliminary experiments.

We also found that the model had a tendency to get stuck

producing the same acoustic token – this is why prior work

incorporate semantic tokens in addition to acoustic tokens [12].

To remedy this, we incorporate a flux loss to penalize repetitive

generations [25]. We adapt the flux loss used for the continuous

autoregressive TTS [25] to discrete units, defining it as:

Lflux =
β

ϵ+ CrossEntropy(ŷt, yt−1)
(1)

where β is a scaling coefficient for the loss term, ϵ is a

small offset added for numerical stability, ŷt is the decoder

logit predictions at timestep t, and yt−1 is the ground truth

codebook index of the prior timestep. Intuitively, this penalizes

the probability of the token in the prior timestep. We apply

this flux loss to L0 codebook predictions, during both ORPO

fine-tuning and pretraining, each with different weightings.

B. Inference algorithms

We combine three inference methods.

1) Repetition aware sampling (RAS): This approach from [2]

is used on the local decoder predictions for positions corre-

sponding to the L0. Using the notation of the original paper,

we found K = 10, tr = 0.09 to yield best results.

2) Quality prefixing: As mentioned in Sec. III-A, in training

we prepend the original sample rate of the reference to the text

to give the model am indication for output quality. In inference,

we always set this to “[48000]” to maximize output quality.

3) Top-p backoff sampling: SLM outputs can be made more

stable by sampling with a low top-p value. However, sometimes

this can cause the model to still get stuck in a loop. We alleviate

this by using a backoff approach similar to the temperature

backoff used by Whisper [26]. Concretely, we sample with a

top-p of 0.2, and check the output length before vocoding. If

the predicted audio is unrealistically short, we increment the

top-p by 0.2 and sample again.

C. Shallow and deep cloning

MARS6 can clone from a reference in two ways – shallow

clone and deep clone. The prior is where we compute the

speaker embeddings from the reference audio and perform

inference directly. While simple, the speaker similarity is not

optimal. The latter is similar to the approach of VALL-E, where

we assume knowledge of the reference transcript, and then

assign a prefix to both the encoder and global decoder as

the reference transcript and acoustic tokens, respectively. This

gives better prosody and speaker transfer from the reference,

at the cost of inference time (longer sequence length).

V. EXPERIMENTAL SETUP

A. Evaluation data and baselines

Many evaluation benchmarks do not capture the diversity of

in-the-wild speech. We therefore construct a new evaluation set

on the emotive EARS dataset [9]. It includes emotional speech,

different reading styles, free-form conversational speech, and

non-verbal sounds recorded in an anechoic environment from

107 English speakers. We select 43 speakers for the test set and

64 for the validation set. Ignoring the non-verbal, free-form

and ‘slow’ utterances, we select half of the samples (audio and

transcript) for each style, and pair each sample with another

of the same speaker and style to serve as the voice cloning

reference. MARS6 and the baseline models have, to the best

of our knowledge, not seen any part of EARS.

We compare the 70M-parameter MARS6 against three

strong baseline models, all much larger: XTTSv2 [1] (460M

parameters), StyleTTS2 [3] (148M parameters), and MetaVoice-

1B [27] (1.2B parameters). We use the best available check-

points and the best inference settings from each paper.

B. MARS6 implementation

1) Model: We use standard 8-layer, 512-dimensional trans-

formers for the encoder and global decoder, and a 4-layer local

decoder. For the two speaker embeddings, we use WavLM-

SV [28] and the pretrained MS-CLAP [20]. We train the BPE

tokenizer to a vocabulary size of 512.

2) Training: We train MARS6 for 2M steps using

AdamW [29] with a linearly decaying learning rate starting

at 5 · 10−4 (after a 10k step linear warmup) and ending at

2.5 · 10−5. We use an AdamW β of (0.9, 0.995), weight decay

of 2 · 10−2, and batch size of 96.

3) Data: We train MARS6 on the following publically

available datasets: LibriHeavy [30], GLOBE [31], VCTK [23],

AniSpeech [32], and CCv2 [33]. We limit the number of

utterances from each speaker to be at most 80k. Together

this results in a training dataset of roughly 46k hours.

C. Evaluation metrics

1) Objective evaluation: We measure intelligibility using

the word/character error rate (W/CER) between the predicted

outputs on our EARS test set and the ground truth audio. We

obtain transcripts of the generated audio using the Whisper-

base speech recognition model [26]. We objectively measure

speaker cloning ability using the equal-error rate (EER) for a

pretrained speaker verification system [34]. The verification

system produces a similarity score between pairs of utterances.

We compute these similarities on (ground truth reference,

generated) pairs and (ground truth reference, other ground

truth) pairs from the same speaker. The former pairs are

assigned a label of 0, and latter a label of 1. Thsese can then

be used to compute an EER as in [35]. A higher EER indicates

that it is harder to distinguish generated speech from ground

truth examples of the reference speaker, up to a theoretical

maximum of 50%. We also report an approximated mean

naturalness metric using the pretrained UTMOS model [24]

predicting naturalness scores on a scale of 1-5.
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TABLE I
RESULTS MEASURING THE INTELLIGIBILITY (W/CER), NATURALNESS

(UTMOS, MOS) AND SPEAKER SIMILARITY (EER, SIM) ON OUR EARS
TEST SET. FOR MOS AND SIM, 95% CONFIDENCE INTERVALS ARE SHOWN.

Model WER ↓ CER ↓ EER ↑ UTMOS ↑ MOS ↑ SIM ↑

Testset topline 5.74 2.50 - 3.50 3.34 ± 0.11 3.46 ± 0.08

XTTSv2 [36] 1.74 0.83 29.4 3.81 3.58 ± 0.08 2.24 ± 0.11

MetaVoice-1B [27] 30.70 27.41 31.2 3.13 2.84 ± 0.11 2.47 ± 0.11

StyleTTS2 [3] 1.34 0.36 23.1 4.40 4.08 ± 0.07 2.80 ± 0.12

MARS6 (deep) 7.42 5.17 30.7 3.79 3.34 ± 0.10 3.07 ± 0.11

MARS6 (shallow) 3.96 2.38 23.1 3.65 3.44 ± 0.08 2.24 ± 0.11

w/o RIO ORPO [8] 14.54 12.92 22.7 3.60 — —

w/o RAS [2] 7.31 5.73 24.0 3.76 — —

w/o quality prefixing 7.06 4.95 26.1 3.56 — —

2) Subjective evaluation: We perform two subjective evalu-

ations using Amazon Mechanical Turk. In the first, we collect

a mean opinion score (MOS) on a 1-5 scale. In the second, we

collect a speaker similarity score (SIM) on a 1-4 scale following

the protocol of the Voice Conversion Challenge 2020 [35]. From

the EARS test set, we select 36 utterances from each baseline,

the ground truth, and MARS6 (both using shallow and deep

clone). We include trapping and calibration samples to filter

out anomalous listeners, resulting in 1326 ratings from 2340

unique listeners. For SIM, each evaluated utterance (from the

baselines, MARS6, or actual ground truth audio) is paired with

another random utterance from the same speaker and speaking

style. We present the listener these samples side-by-side and

ask them to rate how similar the speaker sounds on a 1-4 scale

similar to [35]. After filtering anomalous listeners, we have

1980 SIM ratings from 40 unique listeners.

VI. RESULTS

A. Intelligibility and reference similarity

The results on the EARS test set are given in Table I. Results

are mixed: for intelligibility, StyleTTS is a clear winner. In

terms of speaker similarity, MARS6 using deep clone has the

best SIM score, but in terms of EER, MetaVoice-1B is best. For

naturalness (MOS and UTMOS), StyleTTS2 again is the best.

But these results are perhaps a bit misleading, as can be seen

by both XTTS, StyleTTS, and MARS6 having better W/CER

and UTMOS values than the ground truth test utterances.

While this requires further investigation, the audio samples

on the demo give some insight. Because the EARS is emotive,

spontaneous, and diverse, it is less intelligible than pure read

speech. Models like StyleTTS2 and XTTSv2 appear to produce

audio that is ‘de-emphasized’ compared to that of the reference,

particularly for highly emotive references. Meanwhile, SLM-

based models like MetaVoice and MARS6 appear to clone

the prosody of the reference more strongly at the cost of

intelligibility, indicated by the higher speaker similarity metrics

(especially for deep clone). This effect is clearly heard when a

whispered reference is used, where StyleTTS2 and XTTSv2

produce clean sounding outputs that are not whispered, while

MARS6 correctly produces a whispered output, even if it
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Fig. 2. Comparison of word error rates for different speaker reference styles.

is slightly less intelligible (higher W/CER). So, for highly

expressive speech, lower W/CER numbers do not always

correspond to outputs that are faithful to the reference utterance.

We ablate the RAS, quality prefixing (Sec. IV-B) and RIO

ORPO fine-tuning (Sec. IV-A) in the last three rows of Table I

by measuring the model’s shallow clone performance i.t.o

objective metrics. Removing any of the individual techniques

degrades intelligibility. Speaker similarity is also worse when

removing RIO ORPO. This shows that each technique is

important for MARS6.

B. Effect of reference style and cloning method

To demonstrate this effect a bit more, as well as profile

the cases where MARS6 is making intelligibility errors, we

make use of the style labels in EARS. Using these labels we

plot the WER metric grouped by the style of the reference

utterance in Fig. 2. The trends for most styles appear constant,

except for one reference style – whispers. Most of the W/CER

in Table I from both MetaVoice and MARS6 are attributed

to whispered outputs! This, together with the audio samples,

provides evidence for our earlier hypothesis. MARS6 is able

to produce coherent whisper outputs, however, Whisper-base

cannot accurately transcribe whispers. This also causes the

poorly-cloned outputs of XTTSv2 and StyleTTS2 to be rated

much higher in terms of intelligibility.

VII. CONCLUSION

In this work we looked to improve the robustness of discrete

neural codec-based TTS models. To this end, we proposed

MARS6, which combines several existing and new techniques

for speech language model design, training, and inference. To

evaluate robustness, we proposed a new test set built on the

EARS dataset, consisting of harder and more diverse speech

utterances than in other benchmarks. We compared MARS6

against several prior state-of-the-art TTS baselines, and found

that MARS6 achieves competitive results with models many

multiples larger, particularly in terms of target speaker similarity.

Taken together, we show how many recent language and speech

language modelling techniques can be effectively combined to

achieve a compact, robust, and expressive TTS model.
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