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ABSTRACT

We propose AudioStyleGAN (ASGAN), a new generative adversar-
ial network (GAN) for unconditional speech synthesis. As in the
StyleGAN family of image synthesis models, ASGAN maps sam-
pled noise to a disentangled latent vector which is then mapped to
a sequence of audio features so that signal aliasing is suppressed at
every layer. To successfully train ASGAN, we introduce a num-
ber of new techniques, including a modification to adaptive dis-
criminator augmentation to probabilistically skip discriminator up-
dates. ASGAN achieves state-of-the-art results in unconditional
speech synthesis on the Google Speech Commands dataset. It is
also substantially faster than the top-performing diffusion models.
Through a design that encourages disentanglement, ASGAN is able
to perform voice conversion and speech editing without being ex-
plicitly trained to do so. ASGAN demonstrates that GANs are still
highly competitive with diffusion models. Code, models, samples:
https://github.com/RF5/simple-asgan/.

Index Terms— Unconditional speech synthesis, generative ad-
versarial networks, speech disentanglement, voice conversion.

1. INTRODUCTION

Unconditional speech synthesis is the task of generating coherent
speech without any conditioning inputs such as text or speaker la-
bels [1]. As in image synthesis [2], a well-performing unconditional
speech synthesis model would have several useful applications: from
latent interpolations between utterances and fine-grained tuning of
different aspects of the generated speech, to audio compression and
better probability density estimation of speech.

Spurred on by recent improvements in diffusion models [3] for
images [4-6], there has been a substantial improvement in uncon-
ditional speech synthesis in the last few years. The current best-
performing approaches are all trained as diffusion models [7, 8]. Be-
fore this, most studies used generative adversarial networks (GANs)
[9] that map a latent vector to a sequence of speech features with a
single forward pass through the model. However, performance was
limited [1, 10], leading to GANs falling out of favour for this task.

Motivated by the StyleGAN literature [11-13] for image synthe-
sis, we aim to reinvigorate GANs for unconditional speech synthesis.
To this end, we propose AudioStyleGAN (ASGAN): a convolutional
GAN which maps a single latent vector to a sequence of audio fea-
tures, and is designed to have a disentangled latent space. The model
is based in large part on StyleGAN3 [13], which we adapt for audio
synthesis. Concretely, we adapt the style layers to remove signal
aliasing caused by the non-linearities in the network. This is accom-
plished with anti-aliasing filters to ensure that the Nyquist-Shannon

All experiments were performed on Stellenbosch University’s High Per-
formance Computing (HPC) cluster.
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sampling limits are met in each layer. We also propose a modification
to adaptive discriminator augmentation [14] to stabilize training by
randomly dropping discriminator updates based on a guiding signal.

Using objective metrics to measure the quality and diversity of
generated samples [2, 15,16], we show that ASGAN sets a new state-
of-the-art in unconditional speech synthesis on the Google Speech
Commands digits dataset [17]. It not only outperforms the best
existing models, but is also faster to train and faster in inference.
Mean opinion scores (MOS) also indicate that ASGAN’s generated
utterances sound more natural (MOS: 3.68) than the existing best
model (SaShiMi [7], MOS: 3.33).

Through ASGAN’s design, the model’s latent space is disentan-
gled during training, enabling the model — without any additional
training — to also perform voice conversion and speech editing in a
zero-shot fashion. Objective metrics that measure latent space disen-
tanglement indicate that ASGAN has smoother latent representations
compared to existing diffusion models.

2. RELATED WORK

We start by distinguishing what we call unconditional speech syn-
thesis to the related but different task of generative spoken language
modeling (GSLM). In GSLM, a large autoregressive language model
is typically trained on some discrete units (e.g. HuBERT [18] clusters
or clustered spectrogram features), similar to how a language model
is trained on text [19,20]. While this also enables the generation
of speech without any conditioning input, GSLM implies a model
structure consisting of an encoder to discretize speech, a language
model, and a decoder [21]. This means that during generation, you
are bound by the discrete units in the model. E.g., it is not possible
to interpolate between two utterances in a latent space or to directly
control speaker characteristics during generation. If this is desired,
additional components must be explicitly built into the model [20].

In contrast, in unconditional speech synthesis we do not assume
any knowledge of particular aspects of speech beforehand. Instead
of using some intermediate discretization step, such models typically
use noise to directly generate speech, often via some latent repre-
sentation. The latent space should ideally be disentangled, allowing
for modelling and control of the generated speech. In contrast to
GSLM, the synthesis model should learn to disentangle without being
explicitly designed to control specific speech characteristics. In some
sense this is a more challenging task than GSLM, which is why most
unconditional speech synthesis models are still evaluated on short
utterances of isolated spoken words [1] (as we also do here).

Within unconditional speech synthesis, a substantial body of work
focuses on either autoregressive [22] models — generating a current
sample based on previous outputs — or diffusion models [8]. Diffusion
models iteratively de-noise a sampled signal into a waveform through
a Markov chain with a constant number of steps [3]. At each inference
step, the original noise signal is slightly de-noised until — in the last
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Fig. 1: The ASGAN generator (left) and discriminator (right). FF, LPF, Conv1D indicate Fourier feature [13], low-pass filter, and 1D
convolution layers, respectively. The numbers above linear and convolutional layers indicate the number of output features/channels for that
layer. Stacked blocks indicate a layer repeated sequentially, with the number of repeats indicated above the block (e.g. “x3”).

step — it resembles coherent speech. Autoregressive and diffusion
models are relatively slow because they require repeated forward
passes through the model during inference.

Earlier studies [1, 10] attempted to use GANs [9] for uncondi-
tional speech synthesis, which has the advantage of requiring only
a single pass through the model. While results showed some initial
promise, performance was poor in terms of speech quality and di-
versity, with the more recent diffusion models performing much
better [7]. However, there have been substantial improvements
in GAN-based modelling for image synthesis in the intervening
years [11, 12, 14]. Our goal is to improve the performance of the
earlier GAN-based unconditional speech synthesis models by adapt-
ing lessons from these recent image synthesis studies.

Some of these innovations in GANs are modality-agnostic: R
regularization [23] and exponential moving averaging of generator
weights [24] can be directly transferred from the vision domain to
speech. Other techniques, such as the carefully designed anti-aliasing
filters between layers in StyleGAN3 [13] require specific adaptation;
in contrast to images, there is little meaningful information in speech
below 300 Hz, necessitating a redesign of the anti-aliasing filters.

In a very related research direction, Begus$ [10, 25] has been
studying how GAN-based unconditional speech synthesis models
internally perform lexical and phonological learning, and how this
relates to human learning. These studies, however, have been relying
on the older GAN synthesis models. We hope that by developing
better performing GANs for unconditional speech synthesis, such
investigations will also be improved. Recently, [26] attempted to
directly use StyleGAN?2 for conditional and unconditional synthesis
of emotional vocal bursts. This further motivates a reinvestigation
of GANSs, but here we look specifically at the generation of speech
rather than paralinguistic sounds.

3. ASGAN: AUDIO STYLE GAN

Our model is based on the StyleGAN family of models [11] for image
synthesis. We adapt and extend the approach to audio, and therefore
dub our model AudioStyleGAN (ASGAN). The model follows the
setup of a standard GAN with a single generator network G and
a single discriminator D [9]. The generator GG accepts a vector z
sampled from a normal distribution and processes it into a sequence
of speech features X. In this work, we restrict the sequence of
speech features X to always have a fixed pre-specified duration. The
discriminator D accepts a sequence of speech features X and yields
a scalar output. D is optimized to raise its output for X sampled
from real data and lower its output for X produced by the generator.
Meanwhile, G is optimized to maximize D(X) for X sampled from
the generator, i.e. when X = G(z). The features X are converted
to a waveform using a pretrained HiFi-GAN vocoder [27]. During
training, a new adaptive discriminator updating technique is added to
ensure stability and convergence, as discussed in Sec. 4.

907

3.1. Generator

The architecture of the generator G is shown on the left of Fig. 1. It
consists of a latent mapping network W that converts z to a disentan-
gled latent space, a special Fourier feature (FF) layer which converts a
single vector from this latent space into a sequence of cosine features
of fixed length, and finally a convolutional encoder which iteratively
refines the cosine features into the final speech features X.

Mapping network: The mapping network W is a multi-layer
perceptron with leaky ReLU activations. As input it takes in a vector
sampled from a normal distribution z ~ Z = AN(0,I); we use a
512-dimensional multi-variate normal vector, z € R*'2, Passing z
through the mapping network produces a latent vector w = W(z)
of the same dimensionality as z. As explained in [11], the primary
purpose of W is to learn to map noise to a linearly disentangled space,
as this will allow for controllable and understandable synthesis. W is
coaxed into learning such a disentangled representation because it can
only linearly modulate channels of the cosine features in each layer
of the convolutional encoder (see details below). This means that W
must learn to map the random normal Z-space into a W-space that
linearly disentangles common factors of speech variation.

Convolutional encoder: The convolutional encoder begins by
linearly projecting w as the input to an FF layer [28]. We use the
Gaussian Fourier feature mapping [28] and incorporate the trans-
formation from StyleGAN3 [13]. The Gaussian FF layer samples
a frequency and phase from a Gaussian distribution for each out-
put channel. The layer then linearly projects the input vector to a
vector of phases which are added to the random phases. The out-
put is calculated as the cosine functions of these frequencies and
phases, one frequency/phase for each output channel. The result is
that w is converted into a sequence of vectors at the output of the
FF layer. This is iteratively passed through several Style Blocks.
Ineach Style Block layer, the input sequence is passed through
a modulated convolution layer [12] whereby the final convolution
kernel is computed by multiplying the layer’s learnt kernel with the
style vector derived from w, broadcasted over the length of the ker-
nel. To ensure the signal does not experience aliasing due to the
non-linearity, the leaky ReLU layers are surrounded by layers respon-
sible for anti-aliasing (explained below). All these layers comprise a
Style Block, which is repeated in groups of 5, 4, 3, and finally
2 blocks. The last block in each group upsamples by 4 x instead of
2x, thereby increasing the sequence length by a factor of 2 for each
group. A final 1D convolution projects the output from the last group
into the audio feature space (e.g. log mel-spectrogram or HuBERT
features [18]), as illustrated in the middle of Fig. 1.

Anti-aliasing filters: From image synthesis with GANs [13], we
know that the generator must include anti-aliasing filters for the sig-
nal propagating through the network to satisfy the Nyquist-Shannon
sampling theorem. This is why, before and after a non-linearity, we
include upsampling, low-pass filter (LPF), and downsampling layers



in each Style Block. The motivation from [13] is that most non-
linearities introduce arbitrarily high-frequency information into the
output signal. The signal we are modelling (speech) is continuous,
and the internal discrete-time features that are passed through the
network is therefore a digital representation of this continuous signal.
From the Nyquist-Shannon sampling theorem, we know that for such
a discrete-time signal to accurately reconstruct the continuous signal,
it must be bandlimited to 0.5 cycles/sample. If not, the generator can
learn to use aliasing artifacts to fool the discriminator, to the detri-
ment of the quality and control of the final output. To address this,
we follow [13]: we approximate an ideal continuous LPF through
the sequence of upsample, LPF, non-linearity, and downsample op-
erations to ensure that the signal is bandlimited. We reason that the
generator should ideally first focus on generating course features
before generating good high-frequency details, which will inevitably
contain more trace aliasing artifacts. So we design the filter cutoff
to begin at a small value in the first Style Block, and increase
gradually to near the critical Nyquist frequency in the final block.

3.2. Discriminator

The discriminator D has a convolutional architecture similar to [12],
taking a sequence of speech features X as input and predicting
whether it is generated by G or sampled from the dataset. Concretely,
D consists of four ConvD Blocks and a network head, as show in
Fig. 1. Each ConvD Block is comprised of 1D convolutions with
skip connections, and a downsampling layer with an anti-aliasing
LPF in the last skip connection. The LPF cutoff is set as the Nyquist
frequency for all layers. The number of layers and channels are cho-
sen so that D has roughly the same number of parameters as G. D’s
head consists of a minibatch standard deviation [24] layer and a 1D
convolution layer before passing the flattened activations through a
final linear projection head to arrive at the logits. Both D and G are
trained using the non-saturating logistic loss [9].

3.3. Vocoder

Once the generator GG and discriminator D are trained, we need a way
to convert the speech features back to waveforms. For this we use a
pretrained HiFi-GAN vocoder [27] that vocodes either log mel-scale
spectrograms or HuBERT features [18].

4. EXPERIMENTAL SETUP
4.1. Data

To compare to existing unconditional speech synthesis models, we use
the Google Speech Commands dataset of isolated spoken words [17].
As in other studies [1,7,8], we use the subset corresponding to the ten
spoken digits “zero” to “nine” (called SC09). The digits are spoken
by various speakers under different channel conditions. This makes
it a challenging benchmark for unconditional speech synthesis. All
utterances are roughly a second long and are sampled at 16 kHz.

4.2. Evaluation metrics

We train and validate our models on the official training split from
SC09. We then evaluate speech synthesis quality by seeing how
well newly generated utterances match the distribution of the SC09
test split. We use metrics similar to those for image synthesis; they
measure either the quality of generated utterances (realism compared
to test data), or the diversity of generated utterances (how varied the
utterances are relative to the test set), or a combination of both.
These metrics require extracting features or predictions from a
supervised speech classifier network trained to classify the utterances
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from SC09. While there is no consistent pretrained classifier used
for this purpose, we opt to use a ResNeXT architecture [29], similar
to previous studies [7, 8]. The trained model has a 98.1% word
classification accuracy on the SC09 test set, and we make the model
available for future comparisons.! Using either the classification
output or 1024-dimensional features extracted from the penultimate
layer in the classifier, we consider the following metrics.

Inception score (IS) measures the diversity and quality of gen-
erated samples by evaluating the Kullback-Leibler (KL) divergence
between the label distribution from the classifier output and the mean
label distribution over a set of generated utterances [15]. Modified
Inception score (mlIS) extends IS by incorporating a measure of intra-
class diversity (in our case over the ten digits) to reward models with
a higher intra-class entropy [30]. Fréchet Inception distance (FID)
computes a measure of how well the distribution of generated utter-
ances matches the train-set utterances by comparing the classifier
features of generated and real data [2]. Activation maximization (AM)
measures generator quality by comparing the KL divergence between
the classifier class probabilities from real and generated data, while
penalizing high classifier entropy samples produced by the genera-
tor [16]. Intuitively, this attempts to account for class imbalance in
the training set and also intra-class diversity. All these metrics have
been used in previous unconditional speech synthesis studies [7, 8].

A major motivation for ASGAN’s design is latent-space disentan-
glement. To evaluate this, we use two disentanglement metrics on the
latent Z-space and W -space. Path length measures the mean Lo dis-
tance moved by the classifier features when the latent point (z or w) is
randomly perturbed slightly, averaged over many perturbations [11].
A lower value indicates a smoother latent space. Linear separability
utilizes a linear support vector machine (SVM) to classify the digit of
a latent point. The metric is computed as the additional information
(in terms of mean entropy) necessary to correctly classify an utter-
ance (in terms of which digit is spoken) [11]. Again, a lower value
indicates a more linearly disentangled latent space. These metrics are
averaged over 5000 generated utterances for each model. As in [11],
for linear separability we exclude half the generated utterances for
which the ResNeXT classifier is least confident.

Finally, to give an indication of naturalness, we compute an es-
timated mean opinion score (eMOS) using a pretrained Wav2Vec?2
small baseline from the recent VoiceMOS challenge [31]. This
model is trained to predict the naturalness score that a human would
assign to an utterance from 1 (least natural) to 5 (most natural). We
also perform a subjective MOS evaluation using the same scale. Con-
cretely, we utilize Amazon Mechanical Turk to obtain 240 opinion
scores for each model with 12 speakers listening to each utterance.

4.3. Baselines

We compare to the following unconditional speech synthesis methods
(Sec. 2): WaveGAN [1], DiffWave [8], autoregressive SaShiMi and
Sashimi+DiffWave [7] (the current best performing model on SC09).
For WaveGAN we use the trained model provided by the authors [1],
while for DiffWave we use an open-source pretrained model.> For
the autoregressive SaShiMi model, we use the code provided by
the authors to train an unconditional SaShiMi model on SC09 for
1.1M updates [7].> Finally, for SaShiMi+DiffWave, we modify the
autoregressive SaShiMi code and combine it with DiffWave according
to [7]; we train it on SC09 for 800k updates with the parameters in the
original paper [7].> In all experiments, we perform direct sampling

1https ://github.com/RF5/simple-speech-commands
2https ://github.com/RF5/DiffWave-unconditional
3https ://github.com/RF5/simple-sashimi



from the latent space for the GAN and diffusion models according to
the original papers. For the autoregressive models, we directly sample
from the predicted output distribution for each time-step sample.

4.4. ASGAN implementation

We train two variants of our model: a log mel-spectrogram based
model and a HuBERT feature based model [18]. The former is shown
in Fig. 1, where the model outputs 128 mel-frequency bins at a hop
and window size of 10 ms and 64 ms, respectively. The HuBERT
model is identical except that it only uses half the sequence length
(since HUBERT features are 20 ms instead of the 10 ms spectro-
gram frames) and has a different number of output channels in the
four groups of Style Blocks: [1024, 768,512, 512] convolution
channels instead of [1024, 512, 256, 128].

The HiFi-GAN vocoder for both the HuBERT and mel-
spectrogram model is based on the original implementation
[27]. The HuBERT HiFi-GAN is trained on the Librispeech
train-clean-100 subset [32] to vocode activations from layer 6
of the HUBERT Base model [18]. The mel-spectrogram HiFi-GAN
is trained on the Google Speech Commands dataset.

Both ASGAN variants are trained with Adam [33] (81 = 0, 82 =
0.99), clipping gradient norms at 10, and a learning rate of 3 - 107>
for 520k iterations with a batch size of 32. Several tricks are used
to stabilize GAN training: (i) equalized learning rate [24], (ii) leaky
ReLU activations with a = 0.1, (iii) exponential moving averaging
for the generator weights [24], (iv) R regularization [23], and (v) a
0.01-times smaller learning rate for the mapping network W [13].

We also introduce a new technique for updating the discrimina-
tor. Concretely, we first scale D’s learning rate by 0.1 compared
to the generator as otherwise we find it overwhelms G early on in
training. Additionally we employ a dynamic method for updating D,
inspired by adaptive discriminator augmentation [14]: during each
iteration, we skip D’s update with probability p. The probability p is
initialized at 0.1 and is updated every 16th generator step or whenever
the discriminator is updated. We keep a running average r; of the
proportion of D’s outputs on real data D(X) that are positive (i.e.
that D can confidently identify as real). Then, if r; is greater than 0.6
we increment p by 0.05 (capped at 1.0), and if r; is less than 0.6 we
decrease p by 0.05 (capped at 0.0). In this way we adaptively skip
discriminator updates. When D becomes too strong, + and p rise,
and so D is updated less frequently. When D becomes too weak (i.e.
fails to distinguish between real and fake inputs), then the opposite
happens. We found this new modification to be critical for ensuring
that the D does not overwhelm G during training.

We also use the traditional adaptive discriminator augmenta-
tion [14] where we apply the following transforms with the same
probability p: (i) adding Gaussian noise with ¢ = 0.05, (ii) ran-
dom scaling by a factor of 1 & 0.05, and (iii) randomly replacing
a subsequence of frames from the generated speech features with a
subsequence of frames taken from a real speech feature sequence.
This last augmentation is based on the fake-as-real GAN method [34]
and is important to prevent gradient explosion later in training.

For the anti-aliasing LPF filters we use windowed sinc filters
with a width-9 Kaiser window [35]. For the generator, the first
Style Block has a cutoff at f. = 0.125 cycles/sample which is
increased in an even logarithmic scale to f. = 0.45 cycles/sample in
the second-to-last layer, keeping this value for the last two layers to
fill in the last high frequency detail. Even in these last layers we use
a cutoff below the Nyquist frequency. For the discriminator we are
less concerned about aliasing as it does not generate a sequence, so
we use a f. = 0.5 cycles/sample cutoff for all ConvD Blocks.
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All models are trained on a single NVIDIA Quadro RTX 6000
using PyTorch 1.11.

5. RESULTS: UNCONDITIONAL SPEECH SYNTHESIS

Table 1 compares previous state-of-the-art unconditional speech syn-
thesis approaches to the newly proposed ASGAN. As a reminder, IS,
mlS, FID and AM measure generated speech diversity and quality
relative to the test set; eMOS and MOS are measures of generated
speech naturalness. We see that both variants of ASGAN outperforms
the other models on most metrics. The HuBERT variant of ASGAN
in particular performs best across all metrics. The improvement of the
HuBERT ASGAN over the mel-spectrogram variant is likely because
the high-level HuBERT speech representations make it easier for the
model to disentangle common factors of speech variation. The pre-
vious best unconditional synthesis model, SaShiMi+DiffWave, still
outperforms the other baseline models, and it appears to have compa-
rable naturalness (similar eMOS and MOS) to the mel-spectrogram
ASGAN variant. However, it appears to match the test set more
poorly than either ASGAN variant on the other diversity metrics.
Latent space disentanglement and generation speed of each model
are measured in Table 2. These results are more mixed, with Wave-
GAN being the fastest model and the one with the shortest latent
Z-space path length. However, this is somewhat misleading since
WaveGAN'’s samples have low quality and poor diversity compared
to the other models (see Table 1). This means that WaveGAN’s latent
space is a poor representation of the true distribution of speech in the
SC09 dataset, allowing it to have a very small path length as most

Table 1: Results measuring the quality and diversity of generated
samples from unconditional speech synthesis models together with
train/test set toplines for the SC09 dataset. Subjective MOS values
with 95% confidence intervals are shown.

Model ISt mIST FID, AM] eMOS{T MOS?T

Train set 937 2376 O 0.20 2.41 3.74+0.12
Test set 936 2423 001 020 243 3.88+0.12
WaveGAN [1] 445 346 177 0.81 1.06  2.88+0.16
DiffWave [8] 513 496 1.68 0.68 1.66  3.43+0.14
SaShiMi [7] 374 189 211 0.99 1.58  3.19+0.15
SaShiMi+DiffWave 544  60.8 1.01 0.61 1.89  3.33x0.12
ASGAN (mel-spec.) 7.02 1628 0.56 0.36 1.76 ~ 3.51+0.13
ASGAN (HuBERT) 7.67 226.7 0.14 0.26 1.99  3.68+0.13

Table 2: Latent-space disentanglement and speed metrics. Speed
is measured as the number of samples that can be generated per
unit time on a single NVIDIA Quadro RTX 6000 using a batch size
of 1 given in ksamples/sec. Some models do not have a W -space
(WaveGAN) or any continuous latent space (SaShiMi).

Path length | Separability |
Model Z w Z w Speed 1
WaveGAN [1] 1.03 — 4.86 — 2214.71
DiffWave [8] 2.72:109 727100 6.09  6.58 0.83
SaShiMi [7] — — — — 0.14
SaShiMi+DiffWave  2.89-10° 1.24-10° 4.07 234 0.47
ASGAN (mel-spec.)  6.77-10  3.21-10  1.81 1.0l 875.45
ASGAN (HuBERT)  3.50-10 1.8410 140  1.00 816.27




Course styles: w;

male speaker saying “seven"
X Fine styles: wi+0.5(w;—wy)

female speaker saying "two"
X

Mel-scale frequency

female speaker saying “seven"
X

Fine styles: w

g
H

Course styles: w;
Fine

Course styles: wi+0.5(w,—wi) Course styles:
Fine

Course styles: wy
styles: wy +2.0(w; —w;)

Course styles: w;

styles: wy+1.0(w,—w;) Fine styles: w;+15(w,—w;) Fine

(a) Voice conversion

wi +0.8(w; —w;) Course styles: wy+0.95(w;—w;) Course styles: wi+1.0(wz—w)

styles: wy Fine styles: w; Fine styles: w;

(b) Speech editing: Digit/content conversion

Fig. 2: Examples of ASGAN (HuBERT variant) performing unseen tasks
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paths do not span a diverse set of speech variation.

In terms of linear separability, ASGAN again yields substantial
improvements over existing models. The results confirm that ASGAN
has indeed learned a disentangled latent space — a primary motivation
for the model’s design. Specifically, this shows that the idea from
image synthesis of using the latent w vector to linearly modulate
convolution kernels can also be applied to speech. This level of
disentanglement allows ASGAN to be applied to tasks unseen during
training, as described in the next section.

Regardless of performance, the speed of all the convolutional
GAN models (WaveGan and ASGAN) is significantly better than the
diffusion and autoregressive models. This highlights an additional
benefit of utilizing convolutional GANs that produce utterances in a
single inference call, as opposed to the many inference calls necessary
with autoregressive or diffusion modelling.

6. UNSEEN TASKS:
VOICE CONVERSION AND SPEECH EDITING

To further showcase the disentangled latent space learned by ASGAN,
here we qualitatively consider how it can be used to perform voice
conversion and speech editing without any further training. Our goal
is not to achieve state-of-the-art results on these tasks or to present a
complete quantitative evaluation, but simply to illustrate the ability
for our model to transfer to these unseen tasks.

For these tasks we wish to modify an already existing utterance
which has not been produced by the generator G. To do this, we
need to map the speech features back to the G’s latent W -space. This
is done using a method similar to [12] whereby we optimize a w
vector while keeping G and the speech feature sequence X fixed.
Concretely, w is initialized to the mean w = E,[W (2z)] and then fed
through the network to produce a candidate sequence X. An Ly loss
between the candidate sequence X and the target sequence X is then
optimized using Adam with the settings from [12].

We can modify several aspects of speech from seen or unseen
speakers by performing style mixing [11]. Concretely, given speech
features for two utterances X1 and X» from potentially unseen speak-
ers, we first project them to the latent space, obtaining w and wa.
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on unseen speakers from the SC09 test set: (a) voice conversion and
https://rf5.github.io/slt2022-asgan—demo.

We can then use different w vectors as the input into each Style
Block in Fig. 1. According to our design motivation in Sec. 3.1, the
course styles (e.g. which word is said) are captured in the earlier lay-
ers and the fine styles (e.g. speaker identity, tone) in later layers. So,
we can perform voice conversion from X ’s speaker to X2’s speaker
by simply replacing the w vector in the last 5 modulated convolutions
(fine styles) with w2, while using w in the earlier blocks (course
styles). By doing the opposite, we can also do speech editing — the
task of replacing the content of the words spoken (replacing w for
course styles), but leaving the speaker identity intact (retaining w for
fine styles). Furthermore, because the WW-space is continuous, we can
interpolate between replacing the course and fine styles to achieve
varying degrees of voice conversion or speech editing.

An example of these tasks on unseen speakers on the SC09 test
set is shown in Fig. 2. For these examples we use the truncation
trick [11] in the W-space with truncation 1) = 0.3. We encourage
the reader to listen to the samples (link given in the caption).

7. CONCLUSION

We introduced ASGAN, a model for unconditional speech synthesis
designed to learn a disentangled latent space. Specifically, we adapted
existing and incorporated new GAN design and training techniques to
enable ASGAN to outperform existing autoregressive and diffusion
models. Experiments on the SC09 dataset validated this design,
demonstrating that ASGAN outperforms previous state-of-the-art
models on most metrics, while also being substantially faster. Further
experiments also demonstrated the benefit of the disentangled latent
space — ASGAN can, without any additional training, perform voice
conversion and speech editing in a zero-shot fashion through linear
operations in its latent space.

One major limitation of our work is scale: once trained, ASGAN
can only generate utterances of a fixed length, and the model struggles
to generate coherent full sentences on datasets with longer utterances
(a limitation shared by existing unconditional synthesis models). Fu-
ture work will aim to address this shortcoming by considering which
aspects of ASGAN can be simplified or removed to improve scaling.
Future work will also perform more thorough subjective evaluations
to quantify how ASGAN performs on unseen tasks.
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