
StarGAN-ZSVC: Towards Zero-Shot Voice
Conversion in Low-Resource Contexts?

Matthew Baas[0000−0003−3001−6292] and Herman Kamper[0000−0003−2980−3475]

E&E Engineering, Stellenbosch University, Stellenbosch, South Africa
{20786379,kamperh}@sun.ac.za

Abstract. Voice conversion is the task of converting a spoken utter-
ance from a source speaker so that it appears to be said by a different
target speaker while retaining the linguistic content of the utterance.
Recent advances have led to major improvements in the quality of voice
conversion systems. However, to be useful in a wider range of contexts,
voice conversion systems would need to be (i) trainable without access
to parallel data, (ii) work in a zero-shot setting where both the source
and target speakers are unseen during training, and (iii) run in real time
or faster. Recent techniques fulfil one or two of these requirements, but
not all three. This paper extends recent voice conversion models based
on generative adversarial networks (GANs), to satisfy all three of these
conditions. We specifically extend the recent StarGAN-VC model by con-
ditioning it on a speaker embedding (from a potentially unseen speaker).
This allows the model to be used in a zero-shot setting, and we therefore
call it StarGAN-ZSVC. We compare StarGAN-ZSVC against other voice
conversion techniques in a low-resource setting using a small 9-minute
training set. Compared to AutoVC—another recent neural zero-shot
approach—we observe that StarGAN-ZSVC gives small improvements in
the zero-shot setting, showing that real-time zero-shot voice conversion
is possible even for a model trained on very little data. Further work
is required to see whether scaling up StarGAN-ZSVC will also improve
zero-shot voice conversion quality in high-resource contexts.

Keywords: speech processing · voice conversion · generative adversarial
networks · zero-shot.

1 Introduction

Voice conversion is a speech processing task where speech from a source speaker
is transformed so that it appears to come from a different target speaker while
preserving linguistic content. A fast, human-level voice conversion system has
significant applications across several industries, from those in privacy and identity
protection [16] to those of voice mimicry and disguise [10, 37]. It can also be
essential for addressing downstream speech processing problems in low-resource

? This work is supported in part by the National Research Foundation of South Africa
(grant number: 120409) and a Google Faculty Award for HK.

2 M. Baas and H. Kamper

contexts where training data is limited: it could be used to augment training data
by converting the available utterances to novel speakers—effectively increasing
the diversity of training data and improving the quality of the resulting systems.

Recent techniques have improved the quality of voice conversion significantly,
in part due to the Voice Conversion Challenge (VCC) and its efforts to concentrate
disparate research efforts [36]. Some techniques are beginning to achieve near
human-level quality in conversion outputs. However, much of the advances and
improvements in quality are limited in their practical usefulness because they
fail to satisfy several requirements that would be necessary for practical use,
particularly in low-resource settings.

First, a practical voice conversion system should be trainable on non-parallel
data. That is, training data should not need to contain utterances from multiple
speakers saying the same words – such a setting is known as a parallel data
setting. Non-parallel data is the converse, where the different utterances used to
train the model do not contain the same spoken words. Parallel data is difficult
to collect in general, and even more so for low-resource language (those which
have limited digitally stored corpora). Second, a practical system should be able
to convert speech to and from speakers which have not been seen during training.
This is called zero-shot voice conversion. Without this requirement, a system
would need to be retrained whenever speech from a new speaker is desired. Finally,
for a number of practical applications, a voice conversion system needs to run at
least in real-time. For data augmentation in particular, having the system run as
fast as possible is essential for it to be practical in the training of a downstream
speech model.

With these requirements in mind, we look to extend existing state-of-the-art
voice conversion techniques. We specifically extend the recent StarGAN-VC2 [13]
approach to the zero-shot setting, proposing the new StarGAN-ZSVC model.
StarGAN-ZSVC achieves zero-shot prediction by using a speaker encoding network
to generate speaker embeddings for potentially unseen speakers; these embeddings
are then used to condition the model at inference time.

Through objective and human evaluations, we show that StarGAN-ZSVC
performs better than simple baseline models and similar or better than the recent
AutoVC zero-shot voice conversion approach [24] across a range of evaluation
metrics. More specifically, it gives similar or better performance in all zero-shot
settings considered, and does so more than five times faster than AutoVC.

2 Related Work

A typical voice conversion system operates in the frequency domain, first con-
verting an input utterance into a spectrogram and then using some model to
map the spectrogram spoken by a source speaker to that of one spoken by a
target speaker. The output spectrogram is then converted to a waveform in the
time-domain using a vocoder [28]. In this paper, we denote spectrogram sequences
as X = [x1,x2, ...,xT], where the spectrogram contains T frames, and each frame

StarGAN-ZSVC 3

xi consists of some number of frequency bins. In our case, we use 80-dimensional
Mel-scale frequency bins, i.e. xi ∈ R80.

Some models [11,32] use parametric algorithms like the WORLD vocoder [20]
to convert the output spectrogram back to a time-domain waveform. Others use
neural vocoders, which can be divided into autoregressive models, such as those
of the WaveNet family [21], and non-autoregressive models, such as MelGAN [15].

Voice conversion models themselves can be classified on several levels. Older
techniques rely on rule-based techniques [6, 27] while newer models rely on
statistical techniques and often make extensive use of deep neural networks [28].
Models can also be classified into traditional models that can only perform one-
to-one voice conversion, such as the recurrent DBLSTM-RNN [31] and Gaussian
mixture based models [30, 33], to newer models like those using variational
autoencoders [12,24] and vector quantized neural networks [3] to allow for many-
to-many conversion where a single model can convert between several possible
source-target speaker pairings.

Finally, the recent AutoVC model [24] (Section 2.2) emerged as the first model
to be able to perform zero-shot voice conversion where either the source or target
speaker is unseen during training. For our new model, we also take inspiration from
recent work on speaker encoding networks trained for speaker verification [35],
as well as the StarGAN-VC and -VC2 [11,13] models (Section 2.1). Concretely,
we attempt to combine these in a new zero-shot voice conversion model.

2.1 StarGAN and Voice Conversion

Generative adversarial networks (GANs) train two separate networks: a generator
and a discriminator. The generator is trained to produce realistic outputs (i.e. it
should aim to accurately approximate some function), while the discriminator is
trained to discern true outputs from ones produced by the generator. Part of the
generator’s objective is to fool the discriminator and to essentially maximize its
loss metric, while the discriminator is trained to do the opposite.

One set of successful voice conversion techniques relies on re-purposing the
StarGAN image-to-image translation technique [2] for voice conversion. In partic-
ular, StarGAN-VC2 [13] extends upon StarGAN-VC [11] by training a single gen-
erator model to perform many-to-many voice conversion using speaker-dependent
modulation factors in so-called conditional instance normalization layers [5].
The model’s generator G(Xsrc, ssrc, strg) converts a spectrogram Xsrc from a
source speaker to a target speaker, producing the converted output Xsrc→trg. The
source and target speaker identities are given as one-hot vectors, ssrc and strg,
respectively. The model’s discriminator D(X, ssrc, strg) takes an input spectro-
gram X and returns a scalar. Intuitively, the generator is trained to force the
discriminator’s output when given converted spectrograms to be high, while the
discriminator is trained to make its output low when given converted outputs
and high when given original spectrograms.

More formally, the generator G is trained to minimize the loss L = λidLid +
λcycLcyc+LG−adv. The first term, Lid is an identity loss term. It aims to minimize
the difference between the input and output spectrogram when the model is

4 M. Baas and H. Kamper

made to keep the same speaker identity, i.e. convert from speaker A to speaker A.
It is defined by the L2 loss:

Lid = ||G(Xsrc, ssrc, ssrc)−Xsrc||2 (1)

Next, many-to-many voice conversion systems like StarGAN-VC2 can perform
cyclic mappings, whereby the model is made to convert an input utterance from
a source speaker to a target speaker, and then convert the output utterance back
to the source speaker. The second term of the loss aims to minimize the cyclic
reconstruction error between the cyclic mapping and original spectrogram [2]:

Lcyc = ||Xsrc −G(G(Xsrc, ssrc, strg), strg, ssrc)||1 (2)

Finally, the adversarial loss term LG−adv is added based on the LSGAN [18] loss.
It defines two constants a and b, whereby G’s loss tries to push D’s output for
converted utterances closer to a, while D’s loss function tries to push D’s output
for converted utterances closer to b and its output for real outputs closer to a.
Concretely, G’s adversarial loss is defined as

LG−adv = (D(G(Xsrc, ssrc, strg), ssrc, strg)− a)
2
. (3)

while, the discriminator D is trained to minimize the corresponding LSGAN
discriminator loss:

LD−adv = (D(G(Xsrc, ssrc, strg), ssrc, strg)− b)2 + (D(Xsrc, strg, ssrc)− a)
2

(4)

In [13], the authors set the scalar coefficients to be λid = 5, and λcyc = 10. The
original study [13] does not mention how a and b are set (despite these greatly
affecting training); we treat them as hyperparameters. Note that the true target
spectrogram Xtrg does not appear in any of the equations – this is what allows
StarGAN-VC2 to be trained with non-parallel data where the source utterance
Xsrc has no corresponding utterance from the target speaker.

StarGAN-VC2 uses a specially designed 2-1-2D convolutional architecture
for the generator, as well as a projection discriminator [19] which comprises of a
convolutional network (to extract features) followed by an inner product with an
embedding corresponding to the source/target speaker pair. For the generator, a
new form of modulation-based conditional instance normalization was introduced
in [13]. This allows the speaker identity (which is provided as a one-hot vector) to
multiplicatively condition the channels of an input feature. According to [13], this
special layer is a key component in achieving high performance in StarGAN-VC2.

We use these building blocks for our new zero-shot approach. Concretely, the
one-hot speaker vectors in StarGAN-VC2 are replaced with continuous embedding
vectors obtained from a separate speaker encoding network (which can be applied
to arbitrary speakers), as outlined in Section 3.

2.2 AutoVC

Zero-shot voice conversion was first introduced in 2019 with the AutoVC model [24],
which remains one of only a handful of models that can perform zero-shot con-
version (see e.g. [25] for a very recent other example). For AutoVC, zero-shot

StarGAN-ZSVC 5

conversion is achieved by using an autoencoder with a specially designed bottle-
neck layer which forces the network’s encoder to only retain linguistic content
in its encoded latent representation. The model then uses a separate recurrent
speaker encoder model E(X), originally proposed for speaker identification [35],
to extract a speaker embedding s from an input spectrogram. These speaker
embeddings are then used to supply the missing speaker identity information to
the decoder which, together with the linguistic content from the encoder, allows
the decoder to synthesize an output spectrogram for an unseen speaker.

Formally, the full encoder-decoder model is trained to primarily minimize two
terms. The first term is an L2 reconstruction loss between the decoder output
spectrogram Xsrc→src and input spectrogram Xsrc, with the source speaker’s
encoding (from the speaker encoder) provided to both the encoder and decoder.
The second term is an L1 loss between the speaker embedding of the decoder
output E(Xsrc→src) and the original speaker embedding ssrc = E(Xsrc). The
encoder and decoder consists of convolutional and Long Short-Term Memory
(LSTM) [8] recurrent layers which are carefully designed to ensure that no speaker
identity information is present in the encoder output.

As with StarGAN-VC and StarGAN-VC2, a corresponding parallel target
utterance Xtrg does not appear in any of the loss terms, allowing AutoVC to
be trained without parallel data. Zero-shot inference is performed by using the
speaker encoder to obtain embeddings for new utterances from unseen speakers,
which is then provided to the decoder instead of the embedding corresponding to
the source speaker, causing the decoder to return a converted output. We use
this same idea of using an encoding network to obtain embeddings for unseen
speakers in our new GAN-based approach, which we describe next.

3 StarGAN-ZSVC

While StarGAN-VC and StarGAN-VC2 allows training with non-parallel data and
runs sufficiently fast, it is limited in its ability to only perform voice conversion
for speakers seen during training: while parallel Xsrc and Xtrg utterance pairs are
not required, the model can only synthesize speech for target speaker identities
(specified as one-hot vectors) seen during training. This could preclude the use of
these models in many practical situations where zero-shot conversion is required
between unseen speakers. Conversely, AutoVC allows for such zero-shot prediction
and is trained on non-parallel data, but it is implemented with a slow vocoder
and its performance suffers when trained on very little data. Combining the
strengths of both of these methods, we propose the StarGAN zero-shot voice
conversion model – StarGAN-ZSVC.

3.1 Overcoming the Zero-shot Barrier

To achieve voice conversion between multiple speakers, the original StarGAN-VC2
model creates an explicit embedding vector for each source-target speaker pairing,
which is incorporated as part of the generator G and discriminator D. This

6 M. Baas and H. Kamper

G D

Source utterance

Mel-spectrogram

E
Source speaker embedding

Projection discriminator2-1-2D CNN
embedding generator

Converted mel-spectrogram

0.863
Discriminator prediction

GRU embedding
network

WaveGlow
vocoder

Converted utterance

X src

E

Arbitrary spectrogram of
target speaker

Y trg

s src

Target speaker embedding

X src → trg

s trg
Mel-spectrogram
transform

Fig. 1. The StarGAN-ZSVC system framework. The speaker encoder network E and
the WaveGlow vocoder are pretrained on large speech corpora, while the generator
G and discriminator D are trained on a 9-minute subset of the VCC dataset. During
inference, arbitrary utterances for the source and target speaker are used to obtain
source and target speaker embeddings, ssrc and strg.

requires that each source-target speaker pairing is seen during training so that
the corresponding embedding exists and has been trained – prohibiting zero-shot
voice conversion. To overcome this hurdle, we instead infer separate source and
target speaker embeddings, ssrc and strg, using a speaker encoder network E –
similar to the approach followed in AutoVC (Section 2.2).

This framework is shown in Figure 1. Utterances from unseen speakers (i.e.
Xsrc and Ytrg) are fed to the speaker encoder E, yielding embeddings for these
new speakers, which are then used to condition G and D, thereby enabling zero-
shot conversion. The generator uses these embeddings to produce a converted
Mel-spectrogram Xsrc→trg from a given source utterance’s Mel-spectrogram Xsrc.

E is trained on a large corpus using a GE2E loss [35] which aims to si-
multaneously maximize distances between embeddings from different speakers
while minimizing the distances between embeddings from utterances of the same
speaker. NVIDIA’s WaveGlow [23] is used, which does not require any speaker
information for vocoding and thus readily allows zero-shot conversion.

3.2 Overcoming the Speed Barrier

The speed of the full voice conversion system during inference is bounded by
(a) the speed of the generator G; (b) the speed of converting the utterance
between time and frequency domains, consisting of the initial conversion from
time-domain waveform to Mel-spectrogram and the speed of the vocoder; and
(c) the speed of the speaker encoder E. To ensure that the speed of the full
system is at least real-time, each subsystem needs to be faster than real-time.

StarGAN-ZSVC 7

(a) Generator Speed. For the generator G to be sufficiently fast, we design
it to only include convolution, linear, normalization, and upscaling layers as
opposed to a recurrent architecture like those used in AutoVC [24]. By ensuring
that the majority of layers are convolutions, we obtain better-than real-time
speeds for the generator.

(b) Vocoder and Mel-spectrogram Speed. The choice of vocoder greatly
affects computational cost. Higher-quality methods, such as those from the
WaveNet family [21], are typically much slower than real-time, while purely
convolutional methods such as MelGAN [15] are much faster but has poorer
quality. Often the main difference between the slower and faster methods is again
the presence of traditional recurrent layers in the vocoder architecture.

We opt for a reasonable middle-ground choice with the WaveGlow vocoder,
which does have recurrent connections but does not use any recurrent layers with
dense multiplications such as LSTM or Gated Recurrent Unit (GRU, another
kind of recurrent cell architecture [1]) layers. We specifically use a pretrained
WaveGlow network, as provided with the original paper [23]. Furthermore, the
speed of the Mel-spectrogram transformation for the input audio is well faster
than real-time due to the efficient nature of the fast Fourier transform and the
multiplication by Mel-basis filters.

(c) Speaker Encoder Speed. The majority of research efforts into obtaining
speaker embeddings involve models using slower recurrent layers, often making
these encoder networks the bottleneck. We also make use of a recurrent stacked-
GRU network as our speaker embedding network E. However, we only need
to obtain a single speaker embedding to perform any number of conversions
involving that speaker. We therefore treat this as a preprocessing step where
we apply E to a few arbitrary utterances from the target and source speakers,
averaging the results to obtain target and source speaker embeddings, and use
those same embeddings for all subsequent conversions.

We also design the speaker embeddings to be 256-dimensional vectors of unit
length. If we were to use StarGAN-ZSVC downstream for data augmentation
(where we want speech from novel speakers), we could then simply sample random
unit-length vectors of this dimensionality to use with the generator.

3.3 Architecture

With the previous considerations in mind, we design the generator G, discrim-
inator D, and encoder network E, as shown in Figure 2. The generator and
discriminator are adapted from StarGAN-VC2 [13], while the speaker encoder is
adapted from the original model proposed for speaker identification [35]. Specifi-
cally, for E we use a simple stacked GRU model, while for D we use a projection
discriminator [19]. For G, we use the 2-1-2D generator from StarGAN-VC2 with
a modified central set of layers, denoted by the Conditional Block in the figure.

8 M. Baas and H. Kamper

E

GR
U
x2

768 256

80xN
spectrogram

G

D

128

80x128
spectrogramLi

ne
ar

Co
nv
2D
 k
:3
x3
 s
:1

GL
U

Co
nv
2D
 k
:3
x3
 s
:2

In
st
an
ce
No
rm
2D

GL
U

256 512 1024 1024

Co
nv
2D
 k
:1
x5
 s
:1

In
st
an
ce
No
rm
2D

GL
U

Li
ne
ar

1

GS
P

Linear

SELU

Linear

SELU

Linear

25
6

25
6

51
2

Dot product

Sum

Scalar
output

Downsample block

Co
nv
2D
 k
:5
x5
 s
:1

CI
N

GL
U

Conditioning
block

Li
ne
ar

SE
LU

s src

s trg Co
nc
at

Li
ne
ar

Li
ne
ar βγ

Co
nv
2D
 k
:5
x1
5
s:
1

256

GL
U

GL
U

Co
nv
2D
 k
:5
x5
 s
:2

128

In
st
an
ce
No
rm
2D

256

GL
U

Co
nv
2D
 k
:5
x5
 s
:2

In
st
an
ce
No
rm
2D

512
Co
nv
1D
 k
:5
x5
 s
:2

In
st
an
ce
No
rm
1D

Re
sh
ap
e
to
 1
D
h:
1
c:
51
20 512512

512 9x conditioning blocks

Co
nv
1D
 k
:1
x1
 s
:1

5120

Re
sh
ap
e
to
 2
D
h:
20
 c
:2
56

Co
nv
2D
 k
:5
x5
 s
:1

Pi
xe
lS
hu
ff
le
 f
:2

GL
U

1024

Co
nv
2D
 k
:5
x5
 s
:1

Pi
xe
lS
hu
ff
le
 f
:2

GL
U

512

Co
nv
2D
 k
:5
x1
5
s:
1

Xsrc → trg

s

1

256

X src

s src s trg

Fig. 2. StarGAN-ZSVC’s network architectures. The speaker encoder E is a recurrent
network similar to that used in the original GE2E paper, while the generator G and
discriminator D are modified versions from the original StarGAN-VC2 architecture.
Within layers, k and s represent kernel size and stride (for convolutions), f is the scaling
factor (for pixel shuffle), and h and c are the height and channels of the output (for
reshape layers). A number alongside a layer indicates the number of output channels
(for convolutions), or output units (for linear and GRU layers). GLU layers split the
input tensor in half along the channels dimension. GSP, GLU, and SELU indicate
global sum pooling, gated linear units, and scaled exponential linear units, respectively.

These conditional blocks are intended to provide the network with a way
to modulate the channels of an input spectrogram, with modulation factors
conditioned on the specific source and target speaker pairing. They utilize a
convolutional layer followed by a modified conditional instance normalization
layer [5] and a gated linear unit [4].

The modified conditional instance normalization layer performs the following
operation on an input feature vector f :

CIN(f , γ, β) = γ

(
f − µ(f)

σ(f)

)
+ β (5)

where µ(f) and σ(f) are respectively the scalar mean and standard deviation of
vector f , while γ and β are computed using two linear layers which derive their in-
puts from the speaker embeddings, as depicted in Figure 2. The above is computed
separately for each channel when the input feature contains multiple channels.

For the discriminator, the source and target speaker embeddings are also fed
through several linear layers and activation functions to multiply with the pooled
output of D’s main branch.

4 Experimental Setup

We compare StarGAN-ZSVC to other voice conversion models using the voice
conversion challenge (VCC) 2018 dataset [17], which contains parallel recordings

StarGAN-ZSVC 9

of native English speakers from the United States. Importantly, we do not train
StarGAN-ZSVC or the AutoVC model (to which we compare) using parallel
input-output examples. However, the traditional baseline models (below) do
require parallel data. All training and speed measurements are performed on a
single NVIDIA RTX 2070 SUPER GPU.

4.1 Dataset

The VCC 2018 dataset was recorded from 8 speakers, each speaking 81 utterances
from the same transcript. 4 speakers are used for training and 4 for testing.
To emulate a low-resource setting, we use a 9-minute subset of the VCC 2018
training dataset for StarGAN-ZSVC and AutoVC. This corresponds to 90% of the
utterances from two female (F) and two male (M) speakers (VCC2SF1, VCC2SF2,
VCC2SM1, and VCC2SM2). This setup is in line with existing evaluations on
VCC 2018 [13], allows for all combinations of inter- and intra-gender conversions,
and allows for zero-shot evaluation on the 4 remaining unseen speakers.

In contrast to StarGAN-ZSVC and AutoVC, some of the baseline models
only allow for one-to-one conversions, i.e. they are trained on parallel data and
can only convert from seen speaker A to seen speaker B. We therefore train the
baseline models on a single source-target speaker mapping (from VCC2SF1 to
VCC2SM2), using 90% of the parallel training utterances for this speaker pair.

All utterances are resampled to 22.05 kHz and then converted to log Mel-
spectrograms with a window and hop length of 1024 and 256 samples, respectively.
During training, for each batch we randomly sample a k-frame sequence from
each spectrogram, where k is randomly sampled from multiples of 32 between
96 to 320 (inclusive). This is done for all models to make it robust to utterance
length, with the exception of StarGAN-ZSVC, which requires fixed-size input for
its discriminator. This leads to slightly worse performance for StarGAN-ZSVC
on long or silence-padded sequences. For a fair comparison, we therefore only
consider non-silent frames of the target utterance.

4.2 Speaker Encoder and Vocoder Setup

The same WaveGlow vocoder is used to produce output waveforms for all networks
to ensure a fair comparison. The WaveGlow model is pretrained on a large external
corpus, as provided by the original paper [23]. However, since all models use log
Mel-spectrogram inputs and produce log Mel-spectrogram outputs, we rather
perform all quantitative comparisons on the spectrograms of each utterance
(instead of waveforms), in order to minimize the vocoder’s confounding effect.

Our WaveGlow implementation takes approximately 240 ms to produce one
second of vocoded audio (taking a spectrogram as input). For the full voice
conversion system to be faster than real-time, this means that the combined
inference speed of the remaining sub-networks needs to be well under 700ms/s,
or preferably significantly faster if used for data augmentation.

The speaker encoder is trained on 90% of the utterances from a combined set
consisting of the VCTK [34], VCC 2018 [17], LibriSpeech [22], and the English

10 M. Baas and H. Kamper

CommonVoice 2020-06 datasets.1 It is trained with the Adam optimizer [14] for
8 epochs with 8 speakers per batch, and 6 utterances per speaker in each batch.
We start with a learning rate of 4× 10−4 and adjust it down to 3× 10−7 in the
final epoch. Embeddings for speakers are precomputed by taking the average
embedding over 4 arbitrary utterances for each speaker.

4.3 Baseline Models

We train 4 baseline models for comparison, all using the Adam optimizer. The
first three are traditional one-to-one conversion models, consisting of a simple
linear model, a DBLSTM model [31], and a UNet model [26]. The final model that
we compare to is the AutoVC model, which is able to do zero-shot many-to-many
conversion (Section 2.2). We compare AutoVC to StarGAN-ZSVC on all variants
of seen/unseen source/target pairings. Each network is trained according to the
method developed by Smith [29] by evaluating the decrease in loss every few
hundred epochs for different learning rates, and updating the learning rate to
correspond to the largest decrease in loss. This process is repeated until the
validation loss begins to increase, after which training is terminated.

All one-to-one models are trained in the same way, taking the source spectro-
gram Xsrc as input and trained with an L1 loss (which we found to produce better
results than the L2 loss) to predict the ground-truth target spectrogram Xtrg.
The linear model consists of 4 convolutional layers with output channels and
kernel sizes of (200, 5), (200, 5), (100, 3), and (1, 3), respectively. The DBLSTM
model is based on the original paper [31], but we do not use any time-alignment
techniques (such as dynamic time warping). The model consists of 4 stacked
bidirectional LSTM layers with a hidden size of 256 and a dropout of 0.3, followed
by a final linear projection layer to bring the output dimension back to 80. The
network is trained with a batch size of 8. The UNet model is built based on the
structure of XResNet [7] using the method defined in the Fast.ai library [9].

Finally, AutoVC is trained using the same loss function as in the original
paper [24]. It is trained with a batch size of 4 for 4700 epochs. The speaker
encoder used is the pretrained encoder E described above.

4.4 StarGAN-ZSVC Training

We train StarGAN-ZSVC using the same Adam optimizer and learning rate
scheduling technique of Smith [29]. Furthermore, we employ several tricks for
successfully training GANs: (i) gradients in G and D are clipped to have a
maximum norm of 1; (ii) the discriminator’s learning rate is made to always
be half of the generators learning rate; (iii) the number of iterations training
the discriminator versus generator is updated every several hundred epochs to
ensure that the discriminator’s loss is always roughly a factor of 10 lower than
the adversarial term of the generator’s loss; and (iv) dropout with a probability

1 Available under a CC-0 license at https://commonvoice.mozilla.org/en/datasets.

https://commonvoice.mozilla.org/en/datasets

StarGAN-ZSVC 11

of 0.3 is added to the input of D after the first 3000 epochs (if added earlier it
causes artifacts and destabilizes training).

The loss function used is the same as that of StarGAN-VC2, with the exception
that the term Lcyc (see Section 2.1) is squared in our model, which we found to
give superior results. We set a = 1, and b = 0 for the LSGAN constants, and
λcyc = 10, λid = 5 for loss coefficients, being adjusted downwards during training
in the same manner as in [13].

4.5 Evaluation

We compare converted output spectrograms to their ground-truth target spec-
trograms on the test dataset using several objective metrics. To account for
different speaking rates, we first use dynamic time warping (DTW) to align the
converted spectrogram to the target spectrogram, and then perform comparisons
over non-silent regions of the target utterance. Non-silent regions are defined as
those 80-dimensional spectrogram frames where the mean vector element value
is greater than -10dB.

In addition to computing the mean absolute error (MAE) and mean square
error (MSE) between spectrograms, we also compute a cosine similarity by
finding the cosine distance between each 80-dimensional source/target frame pair
of the Mel-spectrograms and then computing the mean cosine distance over all
non-silent frames (after DTW alignment). This metric, denoted as cos(θ), gives
an additional measure of conversion quality.

Finally, to quantitatively measure speaker similarity (i.e. determining whether
the generated spectrogram sounds like the target speaker), we define a new metric
using the speaker encoder. We compute speaker embeddings for the target and
output converted spectrograms using the speaker encoder E. The norm of the
difference between these vectors, ||E(Xsrc→trg)−E(Xtrg)|| = enorm, is then used
as a measure of speaker similarity, with a smaller norm corresponding to greater
similarity between the converted and target spectrogram.

We also perform a subjective listening test with 12 proficient English speakers
to assess how well StarGAN-ZSVC compares to AutoVC across various zero-shot
settings. Each participant rated the naturalness of 144 utterances from 1 (bad)
to 5 (excellent) where the utterance order and naming is randomized. The 144
utterances consist of 8 converted utterances for each seen/unseen source/target
speaker pairing, for both AutoVC and StarGAN-ZSVC. A further 14 utterances
are included to find a baseline rating for raw and vocoded audio. The ratings for
each subset are averaged to find a mean opinion score (MOS), which serves as a
measure of conversion quality.

5 Experiments

We perform two sets of experiments. First we perform an evaluation on seen
speakers, where we compare StarGAN-ZSVC to all other models to obtain an
indication of both speed and performance. We then compare StarGAN-ZSVC

12 M. Baas and H. Kamper

with AutoVC for zero-shot voice conversion, looking at both the output and cyclic
reconstruction error. We encourage the reader to listen to the demo samples2 for
the zero-shot models.

5.1 Seen-to-seen Conversion

In the first set of comparisons, we evaluate performance for test utterances
where other utterances from both the source and target speaker have been seen
during training. I.e., while the models have not been trained on these exact
test utterances, they have seen the speakers during training. There is, however,
a problem in directly comparing the one-to-one models (traditional baselines)
to the many-to-many models (AutoVC and StarGAN-ZSVC). The one-to-one
models are trained on parallel data, always taking in utterances from one speaker
as input (VCC2SF1 in our case) and always producing output from a different
target speaker (VCCSM2).

In contrast, the many-to-many models are trained without access to parallel
data, taking in input utterances from several speakers (4 speakers, including
VCC2SF1 and VCCSM2 in our case, as explained in Section 4.1). This means
that the one-to-one and many-to-many models observe very different amounts
of data. Moreover, while the data for both the one-to-one and many-to-many
models are divided into a 90%-10% train-test split, the same exact splits aren’t
used in both setups; this is because the former requires parallel utterances, and
the split is therefore across utterance pairs and not just individual utterances.
To address this, we evaluate the many-to-many models in two settings: on the
exact same test utterances as those from the test split of the one-to-one models,

2 https://rf5.github.io/sacair2020/

Table 1. Objective evaluation results when converting between speakers where both
the source and target speaker are seen during training. For all metrics aside from cosine
similarity, lower is better. Speed is measured as the time (in milliseconds) required
to convert one second of input audio. The first StarGAN-ZSVC and AutoVC entries
correspond to evaluations on the one-to-one test utterances, while the final two starred
entries correspond to metrics computed when using test utterances from all seen training
speakers for the many-to-many models.

Model MAE MSE cos(θ) enorm Speed (ms/s)

Linear 1.277 2.689 0.980 0.860 0.15

DBLSTM 1.329 3.102 0.982 0.496 12.52

UNet 1.370 3.347 0.980 0.545 100.5

AutoVC 0.993 1.756 0.987 0.259 10.99

StarGAN-ZSVC 1.092 2.101 0.977 0.513 1.88

AutoVC* 1.000 1.783 0.987 0.321 10.99

StarGAN-ZSVC* 1.008 1.863 0.983 0.321 1.88

https://rf5.github.io/sacair2020/

StarGAN-ZSVC 13

as well as on all possible source/target speaker utterance pairs where the source
utterance is in the test utterances for the 4 seen training speakers. In the former
case, it could happen that the many-to-many model actually observes one of the
test utterances during training. Nevertheless, reporting scores for both settings
allows for a meaningful comparison.

The results of this evaluation on seen speakers are given in Table 1. The results
indicate that AutoVC appears to be the best in this evaluation on seen speakers.
However, this comes at a computational cost: the linear and StarGAN-ZSVC
models are a factor of 5 or more faster than the models relying on recurrent
layers like DBLSTM and AutoVC.

5.2 Zero-shot Conversion

Next we compare StarGAN-ZSVC and AutoVC in zero-shot settings, where
either the source, target, or both source and target speaker are unseen during
training. Many-to-many models can also be used in a cyclic manner; we use such
cyclic reconstruction as another objective evaluation metric, where we compare
how well the original spectrogram is reconstructed when performing this cyclical
mapping of converting from the source speaker to the target speaker and back
again. Results for zero-shot conversion are shown in Table 2.

The performance for AutoVC and StarGAN-ZSVC are similar on most metrics
for the unseen-to-seen case. But for the seen-to-unseen case and the unseen-to-
unseen case (where both the target and source speakers are new) StarGAN-ZSVC
achieves both better prediction and reconstruction scores. This, coupled with its
fast inference speed (Section 5.1), enables it to be used efficiently and effectively
for downstream data augmentation purposes.

Table 2. Objective evaluation results for zero-shot voice conversion for AutoVC
and StarGAN-ZSVC. The prediction metrics compare the predicted output to the
ground truth target, while the reconstruction metrics compare the cyclic reconstruction
Xsrc→trg→src with the original source spectrogram. enorm indicates the vector norm of
the speaker embeddings for the compared spectrograms, with lower values indicating
closer speaker identities.

Prediction Reconstruction

Setting Model MAE cos(θ) enorm MAE cos(θ) enorm

Seen-to-unseen
AutoVC 1.246 0.982 0.742 1.178 0.976 0.392

StarGAN-ZSVC 1.030 0.982 0.705 0.197 0.997 0.124

Unseen-to-seen
AutoVC 1.014 0.986 0.328 1.201 0.975 0.753

StarGAN-ZSVC 0.974 0.985 0.380 0.921 0.986 0.760

Unseen-to-unseen
AutoVC 1.238 0.981 0.746 1.340 0.968 0.827

StarGAN-ZSVC 1.079 0.982 0.742 0.921 0.986 0.760

14 M. Baas and H. Kamper

seen-to-seen seen-to-unseen unseen-to-seen unseen-to-unseen
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
OS

StarGAN-ZSVC
AutoVC

Fig. 3. Mean opinion score for naturalness for AutoVC and StarGAN-ZSVC in various
source/target seen/unseen speaker pairings with 95% confidence intervals shown.

The results of the subjective evaluation are given in Figure 3. To put the values
into context, the MOS for the raw source utterances and vocoded source utterances
included in the analysis are 4.86 and 4.33 respectively – these serve as an upper
bound for the MOS values for both models. Figure 3 largely supports the objective
evaluations, providing further evidence that StarGAN-ZSVC outperforms AutoVC
in zero-shot settings. Interestingly, it would appear that StarGAN-ZSVC also
appears more natural in the traditional seen-to-seen case. This evaluation indicates
that, for human listeners, StarGAN-ZSVC appears more natural in the low-
resource context considered in this paper.

6 Conclusion

This paper aimed to improve recent voice conversion methods in terms of speed,
the use of non-parallel training data, and zero-shot prediction capability. To this
end, we adapted the existing StarGAN-VC2 system by using a speaker encoder
to generate speaker embeddings which are used to condition the generator and
discriminator network on the desired source and target speakers. The resulting
model, StarGAN-ZSVC, can perform zero-shot inference and is trainable with
non-parallel data. In a series of experiments comparing StarGAN-ZSVC to
the existing zero-shot voice conversion method AutoVC, we demonstrated that
StarGAN-ZSVC is at least five times faster than AutoVC, while yielding better
scores on objective and subjective metrics in a low-resource zero-shot voice
conversion setting.

For future work, we plan to investigate whether scaling StarGAN-ZSVC
up to larger datasets yields similar performance to existing high-resource voice
conversion systems, and whether the system could be applied to other tasks aside
from pure voice conversion (such as emotion or pronunciation conversion).

References

1. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. EMNLP (2014)

StarGAN-ZSVC 15

2. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: Unified
Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
In: IEEE CVPR (2018)

3. Chorowski, J., Weiss, R.J., Bengio, S., van den Oord, A.: Unsupervised speech rep-
resentation learning using WaveNet autoencoders. arXiv e-prints arXiv:1901.08810
(2019)

4. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language Modeling with Gated
Convolutional Networks. In: Precup, D., Teh, Y.W. (eds.) PMLR (2017)

5. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style.
In: ICLR (2017)

6. Erro, D., Moreno, A.: Weighted frequency warping for voice conversion. In: Inter-
speech (2007)

7. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of Tricks for Image
Classification with Convolutional Neural Networks. In: IEEE CVPR (2019)

8. Hochreiter, S., Schmidhuber, J.: Long Short-term Memory. Neural Computation 9,
1735–80 (12 1997)

9. Howard, J., Gugger, S.: DynamicUnet: create a U-Net from a given architecture
(2020), https://docs.fast.ai/vision.models.unet#DynamicUnet, Last accessed 8 Aug
2020

10. Huang, C., Lin, Y.Y., Lee, H., Lee, L.: Defending Your Voice: Adversarial Attack
on Voice Conversion. arXiv e-prints arXiv:2005.08781 (2020)

11. Kameoka, H., Kaneko, T., Tanaka, K., Hojo, N.: StarGAN-VC: Non-parallel many-
to-many voice conversion using star generative adversarial networks. In: IEEE SLT
Workshop (2018)

12. Kameoka, H., Kaneko, T., Tanaka, K., Hojo, N.: ACVAE-VC: Non-Parallel Voice
Conversion With Auxiliary Classifier Variational Autoencoder. IEEE Transactions
on Audio, Speech, and Language Processing 27(9), 1432–1443 (2019)

13. Kaneko, T., Kameoka, H., Tanaka, K., Hojo, N.: StarGAN-VC2: Rethinking Condi-
tional Methods for StarGAN-Based Voice Conversion. In: Interspeech (2019)

14. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv e-prints
arXiv:1412.6980 (2014)

15. Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W.Z., Sotelo, J.,
de Brébisson, A., Bengio, Y., Courville, A.C.: MelGAN: Generative adversarial
networks for conditional waveform synthesis. In: NeurIPS (2019)

16. Lal Srivastava, B.M., Vauquier, N., Sahidullah, M., Bellet, A., Tommasi, M.,
Vincent, E.: Evaluating Voice Conversion-Based Privacy Protection against Informed
Attackers. In: ICASSP (2020)

17. Lorenzo-Trueba, J., Yamagishi, J., Toda, T., Saito, D., Villavicencio, F., Kinnunen,
T., Ling, Z.: The Voice Conversion Challenge 2018: Promoting Development of
Parallel and Nonparallel Methods . In: Odyssey Speaker and Language Recognition
Workshop (2018)

18. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least Squares Genera-
tive Adversarial Networks. ICCV (2017)

19. Miyato, T., Koyama, M.: cGANs with Projection Discriminator. In: ICLR (2018)
20. Morise, M., Yokomori, F., Ozawa, K.: WORLD: A Vocoder-Based High-Quality

Speech Synthesis System for Real-Time Applications. IEICE Transactions on
Information and Systems E99.D(7), 1877–1884 (2016)

21. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: WaveNet: A Generative Model for
Raw Audio. arXiv e-prints arXiv:1609.03499 (2016)

https://docs.fast.ai/vision.models.unet#DynamicUnet

16 M. Baas and H. Kamper

22. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: An ASR corpus
based on public domain audio books. In: IEEE ICASSP (2015)

23. Prenger, R., Valle, R., Catanzaro, B.: Waveglow: A Flow-based Generative Network
for Speech Synthesis. In: IEEE ICASSP (2019)

24. Qian, K., Zhang, Y., Chang, S., Yang, X., Hasegawa-Johnson, M.: AutoVC: Zero-
shot voice style transfer with only autoencoder loss. In: PMLR (2019)

25. Rebryk, Y., Beliaev, S.: ConVoice: Real-Time Zero-Shot Voice Style Transfer with
Convolutional Network. arXiv e-prints arXiv:2005.07815 (2020)

26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In: MICCAI. Springer International Publishing (2015)

27. Shuang, Z.W., Bakis, R., Shechtman, S., Chazan, D., Qin, Y.: Frequency warping
based on mapping formant parameters. In: Interspeech (2006)

28. Sisman, B., Yamagishi, J., King, S., Li, H.: An Overview of Voice Conversion
and its Challenges: From Statistical Modeling to Deep Learning. arXiv e-prints
arXiv:2008.03648 (2020)

29. Smith, L.N.: Cyclical Learning Rates for Training Neural Networks. In: IEEE
WACV (2017)

30. Stylianou, Y., Cappe, O., Moulines, E.: Continuous probabilistic transform for
voice conversion. IEEE Transactions on Speech and Audio Processing 6(2), 131–142
(1998)

31. Sun, L., Kang, S., Li, K., Meng, H.: Voice conversion using deep Bidirectional Long
Short-Term Memory based Recurrent Neural Networks. In: IEEE ICASSP (2015)

32. Suundermann, D., Strecha, G., Bonafonte, A., Höge, H., Ney, H.: Evaluation of
vtln-based voice conversion for embedded speech synthesis. In: Interspeech (2005)

33. Toda, T., Black, A.W., Tokuda, K.: Voice Conversion Based on Maximum-Likelihood
Estimation of Spectral Parameter Trajectory. IEEE Transactions on Audio, Speech,
and Language Processing 15(8), 2222–2235 (2007)

34. Veaux, C., Yamagishi, J., Macdonald, K.: CSTR VCTK Corpus: English Multi-
speaker Corpus for CSTR Voice Cloning Toolkit (2017), http://homepages.inf.ed.
ac.uk/jyamagis/page3/page58/page58.html, Last accessed 1 Sep 2020

35. Wan, L., Wang, Q., Papir, A., Moreno, I.L.: Generalized End-to-End Loss for
Speaker Verification. ICASSP (2018)

36. Zhao, Y., Huang, W.C., Tian, X., Yamagishi, J., Das, R.K., Kinnunen, T., Ling,
Z., Toda, T.: Voice Conversion Challenge 2020: Intra-lingual semi-parallel and
cross-lingual voice conversion. arXiv e-prints arXiv:2008.12527 (2020)

37. Zhizheng, W., Haizhou, L.: Voice conversion versus speaker verification: an overview.
APSIPA Transactions on Signal and Information Processing 3, e17 (2014)

http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html

	StarGAN-ZSVC: Towards Zero-Shot Voice Conversion in Low-Resource Contexts

