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Wikipedia describes dynamic programming as an optimization or computer programming
method where a complicated problem is broken “down into simpler sub-problems in a
recursive manner.”1 This is quite vague. This note tries to describe dynamic programming
in a more concrete (but still general) way.

Dynamic programming is finding the shortest path on a DAG

This section is roughly based on [Mensch and Blondel, §3.1]. They state that all dynamic
programming problems can be (re-)formulated as finding the shortest path between a start
and end node in a weighted directed acyclic graph (DAG).

Formally, a DAG consists of a number of nodes (vertices) and weighted edges. Let wi,j

denote the weight between parent node i and child node j. Let us also label the nodes from
0 (the start node) to N (the end node). We can do so without loss of generality. An example
of such a graph is shown below.
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We want to find the path through such a graph that gives the lowest cost when adding up
all the weights on that path. Let us define αi as the cost of the best path up to node i. I.e.,
αi is the sum of the weights on the shortest path from node 0 to node i. We will define it
more formally in just a little bit. Given this definition, we can find the shortest path by
applying the following forward recursive steps:

α0 = 0
αi = min

j∈Pi

[wj,i + αj ] ∀ i = 1, . . . , N − 1

with Pi the set of parent nodes of i.
1https://en.wikipedia.org/wiki/Dynamic_programming
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To find the best path after calculating all of the forward variables, we now need to backtrack
through the graph, starting with the final node N :

qN = arg min
j∈PN

[wj,N + αj ]

Here qN denotes the node from which we moved into N on the optimal path. We can then
determine from which node we moved into this penultimate node, and so on. In general we
will have

qi = arg min
j∈Pi

[wj,i + αj ]

So, after calculating qN , we set i = qN and determine the optimal parent node of i using the
equation above. We continue to do this, each time setting i = qi until we backtrack to the
start node where qi = 0. This backtracking step can either be done after you’ve completed
the recursive forward steps for calculating the αi’s, or you can keep track of the history of
where you came from (stored in the q’s) while calculating the α’s.

Why does this work?

Let’s first answer this question intuitively, using the figure below. Let’s say we’ve run
through the algorithm, and we’ve calculated α for nodes 11, 29 and 30. We therefore know
the best way to get to each of these nodes from the first node (0), and we know the cost of
getting there. Now, we want to calculate α31, i.e., we want to know the best path of getting
to node 31 and we want to know what the cost will be. The optimal path to this node will
definitely go through one of its parents (11, 29 or 30). So we simply calculate the total cost
for the three paths through the parents. And, since we know how to get to each of the
parents (and the cost of getting there), this is easy: you just add the cost of getting to the
parent node with the weight of then moving to node 31, i.e. α31 = minj∈{11,29,30} [wj,31 + αj ].
This is exactly as in our algorithm!
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Why does this work? Let’s now answer this question formally. We start by mathematically
defining αi as follows:

αi , min
Qi

∑
(u,v)∈Qi

wu,v

Qi denotes potential paths from node 0 to node i. Formally, it can be seen as a set of tuples
(u, v) of start-end nodes which are connected along this path. For instance, in the first figure
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you could have Q3 = {(0, 1), (1, 3)}. The definition therefore defines αi as the cost along
the optimal path from node 0 to i (as explained earlier, here it is just formalized). To show
why the recursive dynamic programming equations solve the problem of finding the most
optimal path, we need to show that the steps in the forward equations actually matches this
definition.

We show this by writing out αi as follows:

αi = min
Qi

∑
(u,v)∈Qi

wu,v

= min
Qj

min
j∈Pi

wj,i +
∑

(u,v)∈Qj

wu,v


= min

j∈Pi

wj,i + min
Qj

∑
(u,v)∈Qj

wu,v


= min

j∈Pi

[wj,i + αj ]

This is exactly the equation given above in the forward steps! This completes the proof that
the calculation of αi in the forward equations indeed corresponds to the definition.

A bit more general

Erickson describes the shortest path algorithm a little more generally. He states that any
shortest path algorithm can be formulated according to the pseudo code:

# Initialise
alpha[0] = 0 # cumulative cost
q[0] = None # predecessor (history) of starting node undefined
for i = 1 to N:

alpha[i] = inf # start with undefined path
q[i] = None

# Relax edges
while there is at least one tense edge:

# Relax any tense edge
alpha[i] = w[j, i] + alpha[j]
q[i] = j

A “tense” edge is described as an edge between nodes (j, i) where wj,i + αj < αi. I.e., the
current (tentative) αi is incorrect since moving through node j actually provides a shorter
way to get from node 0 to i. We should therefore reassign it to the shorter path, and we
continue to do this until there are no more tense edges.

We see that the DAG formulation in the first section matches the definition here. What I
like about this slightly more general formulation is that it highlights that there are actually
still some design decisions required to solve the problem! In what order should we consider
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the nodes? For the DAG formulation, if we decide to always go from node 0 to node N , how
do we number our nodes? And, for a complete algorithm, we will of course also need to
know the edge weights and whether there are any constraints on the connectivity.

In practice

In some cases it is convenient to have a multi-indexed cumulative cost α. You see this, for
instance, in the typical implementations of dynamic time warping, hidden Markov models
and the edit distance algorithm.

As a brief example of why this could be useful, consider the case where we want to find the
shortest path through the graph, but we want the path to consist of exactly C connections.
For instance, if C = 5, then we are requiring the algorithm to move along exactly five edges:
it can’t move directly from the start to the end node (one step), but it can also not take six
steps to get from the start to the end node.

In this case we can define

αi,c , min
Qi

∑
(u,v)∈Qi

wu,v such that |Qi| = c

I.e., αi,c is the score of the optimal path to node i consisting of exactly c connections. We
can calculate αi,c recursively as

αi,c = min
j∈Pi

[wj,i + αj,c−1] ∀ i = 1, . . . , N and c = 1, . . . , C

We will then backtrack, starting with the final node N with C connections, i.e. we will
consider the αN,C . Let’s say it’s parent is node j. From the parent j we will then backtrack
using αj,C−1, i.e. the quickest way to get to node j along a path of C − 1 connections. And
so forth.

Importantly, this solution could be reformulated to match the DAG formulation exactly: we
could simply think of a graph where each node is indexed by a tuple (i, c), i.e. the graph
would consist of (N + 1)× C nodes.

If this multi-indexed idea doesn’t make entire sense, that’s okay. If you follow the steps for
deriving dynamic time warping, you should be able to see this connection.
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