Recurrent neural networks

Herman Kamper

2024-04, CC BY-SA 4.0

A fixed-window neural language model
A simple RNN language model
Recurrent neural networks (RNNs)
Backpropagation through time
Vanishing and exploding gradients
Extensions of RNNs

Common misconceptions

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

A fixed-window neural language model

™
¥ = % ° Output distribution
o © o .
° 2 N fo(x14) =Y
III = softmax(W?h + b))
e [0,1]V!
[0c000000000000]
w2l
Hidden layer
000000000 h — g(Wille + bl1))
wil
Concatenated word
(0000 0000 0000 0000 | embeddings
e = [e1; er; e3; ey
E E E E
[cc00- - 0] [0000---0O] [0000 -0 [0000-- 0] One-hot word vectors
time ago in a
X1 Xo X3 X4

What about a neural network that could process inputs of arbitrary
length?

A simple RNN language model

V6 = P(x7|a long time ago in a)

3
3
B
4
o

Output distribution
fe,t(xl:t) =y =
softmax(Wpoh: + b,)
e [0,1]V!

Hidden states
ht =
g (Wprhi—1 + W;,e, +by,)

Word embeddings
€e; = EXt

One-hot word vectors
x, € {0,1}V

An RNN language model outputs a ¥, at every time step ¢:!

Ut = Po(wipr = klwiy) = Po(Xeq16 = 1]X1:4)

in the figure, x; is the one-hot vector representing word .

Training loss

You can think of the output at ¢ as having its own loss: J;(0)

The overall loss is the sum of the losses at every time step:

J(0) = ; J:(0)

We use the negative log likelihood for J(8):

T
J(0) = — Z log Py(wy41|w:.)
t=0

T |V
= =2 Tk log s
t=0 k=1
T T T
= —_— Z log gt,j = — Z log gtth+1 = Z Jt(a)
t=0 t=0 t=0

where j is the position where x;. is on and

Jt(e) = - log gt,wt+1

Jo(@) 4+ S0 + J:(8) + J3(0) + Ju(0) =J(O) = ZtT:o Ji(0)

- 10g gO,a - lOg Ql,long - lOg rgZ,time - log rgS,ago - log :l)4,</s>

| S R A

Note that J;(0) is also the cross entropy between the one-hot x;
and y;, if we think of these as discrete distributions:

VI

H(Xi11,9:) = D Trs1k 108 ok
k=1

= —log@:; = — 108 Yt weis

In PyTorch you will probably use the cross entropy loss class.

In practice we normally get the overall loss by averaging over the
per-time-step losses:?

10) = gy 2 (6)

= —m Z log Qt,wt+1

1
— T n 1 Zlog Pg wt+1|w1 t)

How does this averaged loss compare to the definition of perplexity
given in the note on N-gram language modelling?

2] normalise by T + 1 here since | explicitly include an end-of-sentence token
at T'+ 1. Some explanations do not do this, then we would normalise by 7.

https://www.kamperh.com/nlp817/notes/03_lm_ngrams_notes.pdf

Recurrent neural networks (RNNs)

The core idea is to process each time step in the same way and
influence the next time step through a hidden memory.

hy = g (Wpphi—1 + Wipx: + by,)

Vector diagram:

A

h, h h;
[— Whh [— Whh [— Whh
hy — «—b, «——Dby, «——b;,

T th T ih T Wih,

X1 X9 X3

The shaded nodes represent the recurrent operation, as in the equation.
The same weights are applied at every time step:
o Apply W, to every input x;

o Apply Wy, to every hidden state h;_; to affect the next hidden
state h,

BPTT preliminaries

: A quick summary of backprop

e —T

e —BT

2a 2T
- :-—'—_—‘—‘:roc!
= 8, %33 22 =P (
L

\$

jaa IO |
oM 102

\$
g
)0’ 1;‘
(04

[§3
(K3
o
\$

Backpropagation through time (BPTT)

Consider the vector diagram of the general RNN:

yi

The computational graph (not showing all the parameters) are given
at the top of the next page.

Yr—2 Yr—1 yr
[
hr_» hr_; hr
XT-2 X7T-1 XT

Wi
Wi

Below we considered how we would determine the gradients dw,, for
W . The other gradients would be determined in a very similar way.

The gradients in an RNN

Since Wy, is the input to more then one operation (node) in the
graph (i.e. it forks), we would get the error term as the sum:

8hT75hT> + prod <ahT1,5hT_l) +
h

OWpp,
oh,
.. d| —=—,0
+ pro (awhh, h1>

d0w,, = prod (

.. . . . 0J _ 9z0J da 8J
This is from the generalised chain rule (scalars: 4, = 5252 + 2257).

However, practically speaking, we won't be calculating dw,, in one
shot. Instead, we do exactly what the backpropagation algorithm says:
Starting at the final operation, we will accumulate terms systematically
as we proceed backwards through the graph:

0
aWhh7 ht)
fort=T,T—-1,...,1

oh
Ow,, < Ow,, + prod (t

This is why | sometimes call dw,, the accumulator for Wp,,.

Note that we need to make sure that the accumulator for h, is final
before using it to update dw,,. Stated differently, before we can use
Oy, all operations taking h; as input should have been backpropped.

In this case h; is involved as the input to two operations: one with
output y; and the other with output h,. ;. So before updating W,
we should have already finished the accumulation for dy,:

B oy ohy iy
On, = prod <8ht oy) + prod <8ht’ 6ht+1>

10

The backprop order

The above implies a particular order for backpropagation through time:

Y2 Yr-1 yr
(4) (1)
0 0
hr_, 6hT,, hr
v (3) v
hr_ hr_ h 1)
T-2 TI 1 (5) T Wi (2)
Win
5W}zﬁ Win

XT-2 XT-1 XT

11

Vanishing and exploding gradients

Consider the RNN graph where we have an output after the fourth
time step:

Jy
h; L hy L hs L hy
Whh
hy —
0 Wih
jl X2 X3 X4

0J4 d <8h2 &]4)

on; Y% On, on,
_ by O
~ Oh; ~ Oh,
0h2 8h3 8J4
= X X
oh; ~ |Ohy, = Ohs
oh, 0Oh; Oh, 0J,
= X X X

oh; 0Ohy, 0Ohs Ohy

oh,

Ohy_,

What happens if the elements in the matrices become small?

Or very large?

12

Proof for linear RNNs

Consider an RNN with an identity activation: g(z) =z

Recurrence:
h; = Wy he 1 + Wiyx, + by,

Derivative of output of recurrence block w.r.t. h;:

Oh, 0
= W h;_
=W,
using the identity 28% = AT

Let's say our RNN has a single output only at the final time step
T. What is the gradient of this loss Jr(6) w.r.t. some intermediate
hidden state h;?

0Jr _ Ohipy Ohyy - Ohy OJr
oh; Oh; ~ Ohiy ohy_, ohy
T oh, | 0Jr

oh,_; | Ohr

| t=it1
0Jr

- HW]&hT

K i+1

You can already start to see the problem: We have the power of
a matrix W}, , which will either die away or explode as the length
T — 1 gets bigger. Whether it dies or explodes will depend on the
characteristics of the matrix.

13

One way to characterise the matrix is through its eigenvectors and
eigenvalues. We can decompose W), as

W/, = PDP™!

where P is the matrix of eigenvectors as columns and D is a matrix
with the eigenvalues on its diagonal. With this decomposition, you
can get an expression for the power:

(W) =PD"P!
as explained by slcmath®@pc.

This means that the gradient above can be written as

—=PD"7'P —

Now we can see that if the eigenvalues in D is < 1, then D7~ will
approach 0 as T' — ¢ grows. l.e. the gradients will vanish as our
sequences get longer.

On the other hand, if the eigenvalues are large, then the gradient will
explode.

A similar proof exists for the non-linear case: Vanishing occurs when the
eigenvalues are < ¢, with constant ¢ depending on the dimensionalities
and the specific nonlinearity used.

The derivation on this page will not be examined.

14

https://www.youtube.com/watch?v=sj1awAHYmBM

Solutions to exploding gradients

Exploding gradients could lead to overflow while training: inf or NaN

It could also cause irresponsibly large gradient steps:

oJ
0«60 —n—
Y 50
Solution: Gradient clipping

o If the norm of the gradient is larger than some threshold, scale
the gradient down before taking a step.

e You are still taking a gradient step in the same direction, but
just a smaller step.

15

Solutions to vanishing gradients

Vanishing gradients mean your model can't learn long-term dependen-
cies:

When she tried to print her tickets, she found
that the printer was out of toner. She went to
the stationery store to buy more toner. It was
very overpriced. After installing the toner
into the printer, she finally printed her ...

The solution is to use more advanced classes of RNN networks:
+ Long short-term memory (LSTM)
« Gated recurrent units (GRUs)

Let's learn about these types of RNNs: colha’s blog

Done. You are now an expert in LSTMs and GRUs.

16

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Why do these networks fix the vanishing gradient problem?
In the vanilla RNN we have:
h; = g (Wpnrhe_y + Wix, + by,)

If hy needs to affect the output at time step 7', it has to go through
a ton of Wy, multiplications (7" — 1 multiplications to be exact).

The crucial part in LSTMs and GRUs is the line running at the top of
the cell state:®

Ciy %

@

This gives a direct connection between time step ¢ — 1 and ¢, without
any matrix multiplication in between. The gate can decide to ignore
what happened at ¢t — 1 (based on what is happening at ¢), but it can
also decide to let past hidden information flow through unaltered.

3Figure from colha's blog.

17

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

To make this concrete, let's compare the gradients for the cell state to
that of the hidden layer from the linear RNN that we looked at before.

Ci—1

f, € [O, I]D iy ®¢c € RP

For the cell line we have
¢=fOc 1 +i,O¢
giving the derivative

aCt

Oci—y

= diag(f;)

This derivative is different at different time steps t, since the forget
gate output f; is different. So we will repeatedly apply f; € [0, 1],
but sometimes it will let past information through (with values close
to 1) and sometimes it will block past information (values close to 0).

Contrast this with the derivative for the linear RNN:

oh, o r
aht,1 - Whh

Here you have the same term being applied over and over again over
the time steps.

18

Extensions of RNNs

Bidirectional RNNs

A
ER
S <
= 1 T
5%
= = =
Il | Il
& g 18
00000000

e ool _|
E\H XL
ool |
En\‘ﬂ -
(eXe]

—leo
o
cessssssh | Eese—

00000000

Multilayer RNNs

<—{0000l«—{0000«—{0000le—¢

<«—[oooo—100

0Ol«—J0000le—

<«—J[0oool«—]00

OOle—[00 00—

<«—{00ool«—J00

0 Ol¢——[0 00 Ole—— '

<«+—J0000l«—00O

O Ol¢«——(0 00 Of«—

[eo o9

[co o]

[eo o9

19

Common misconceptions

Combing operations in a node in the computational graph

Not realising that nodes in a computational graph can contain internal
operations itself. As long as you can get a node's outputs from its
inputs (forward pass) and the derivatives of its outputs w.r.t. its inputs
(backward), several operations can be combined as a single node.
E.g. in the RNN computational graphs in this note | use grey blocks
to indicate the recurrent operation:

W, Wi, by

h; = g (Wpphi1 + Wipx: + by,)

20

Videos covered in this note

» From feedforward to recurrent neural networks (15 min)

« RNN language model loss function (9 min)

o RNN definition and computational graph (3 min)

 Backpropagation through time (25 min)

« Vanishing and exploding gradients in RNNs (13 min)

« Solutions to exploding and vanishing gradients (in RNNs) (10
min)

« Extensions of RNNs (8 min)

Further reading

For vanilla RNNs, and specifically looking at different input-output
configurations, make sure to read Andrej Karpathy's blog post:
The unreasonable effectiveness of recurrent neural networks.

Acknowledgements

This note relied very very heavily on content from:

o Chris Manning's CS224N course at Stanford University
o The D2L textbook from Zhang et al. (2021)

References

C. Manning, “CS224N: Language models and recurrent neural net-
works," Stanford University, 2022.

C. Manning, “CS224N: Simple and LSTM recurrent neural networks,”
Stanford University, 2022.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep
Learning, 2021.

21

https://youtu.be/XImxbT8U0h8?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/kUjXExou3Uw?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/Q2UpMrpKI_M?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/d4HRuGknQjI?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/VqYu8INY8co?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/xgMx_YBMU8c?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
https://youtu.be/iGkIIIgPFHQ?list=PLmZlBIcArwhOSBWBgRR70xip-NnbOwSji
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://web.stanford.edu/class/cs224n/
https://d2l.ai/
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture06-fancy-rnn.pdf
https://d2l.ai/
https://d2l.ai/

	A fixed-window neural language model
	A simple RNN language model
	Training loss

	Recurrent neural networks (RNNs)
	BPTT preliminaries: A quick summary of backprop

	Backpropagation through time (BPTT)
	The gradients in an RNN
	The backprop order

	Vanishing and exploding gradients
	Proof for linear RNNs
	Solutions to exploding gradients
	Solutions to vanishing gradients
	Why do these networks fix the vanishing gradient problem?

	Extensions of RNNs
	Bidirectional RNNs
	Multilayer RNNs

	Common misconceptions
	Combing operations in a node in the computational graph
	Videos covered in this note
	Further reading
	Acknowledgements
	References

