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Preliminaries

Jensen’s inequality
A function f(x) is convex over (a, b) if every chord lies on or above
the function:

f (λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b)

with 0 ≤ λ ≤ 1.

f(a)

f(b)

a bxλ
xλ = λa+ (1− λ)b

λf(a) + (1− λ)f(b)

f(xλ)

f(x)

Jensen’s inequality generalizes this definition. For any convex function
f(x):

f(
K∑

k=1
λkxk) ≤

K∑
k=1

λkf(xk)

with λk ≥ 1 and ∑K
k=1 λk = 1.

Easy to see for K = 2: Just definition of a convex function

For K > 2: Proved by induction (Wikipedia)
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Kullback-Leibler divergence
The Kullback-Leibler (KL) divergence gives a measure of how dif-
ferent one probability distribution is compared to another reference
distribution.

For discrete distributions with probability mass functions P and Q
over outcomes k = 1, 2, . . . , K, the KL divergence is defined as

DKL(P∥Q) ≜
K∑

k=1
P (x = k) log Q(x = k)

P (x = k)

For continuous distributions with probability density functions p and
q, the KL divergence is

DKL(p∥q) ≜
∫

x
p(x) log q(x)

p(x) dx

Using Jensen’s inequality, we can show that

DKL(p∥q) ≥ 0

with it being zero only if the distributions are identical.

The KL divergence isn’t strictly a distance:

DKL(p∥q) ̸= DKL(q∥p)
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Expectation maximisation
We have a model where each observed variable x(n) depends on a
hidden variable z(n). We want to maximize the log likelihood of the
parameters:1

L(θ) =
N∑

n=1
log pθ(x(n))

=
N∑

n=1
log

∑
z(n)

pθ(x(n), z(n))


The log of a sum cannot be pushed into the sum (as is the case with
the log of a product). So we typically can’t find a closed-form solution
for the parameters by setting ∂L(θ)

∂θ
= 0.

Expectation maximisation is an iterative procedure that gets around
this problem.

Let us first consider a dataset with a single item x(n). We use a helper
distribution Q(z), which can be any distribution (for now):

log pθ(x(n)) = log
∑

z(n)

pθ(x(n), z(n))


= log
∑

z(n)

Q(z(n))pθ(x(n), z(n))
Q(z(n))


Since log is concave, we have from Jensen’s inequality:

log pθ(x(n)) = log
∑

z(n)

Q(z(n))pθ(x(n), z(n))
Q(z(n))


≥

∑
z(n)

Q(z(n)) log pθ(x(n), z(n))
Q(z(n)) = J(Q, θ)

1For notational convenience, we assume that z is discrete and x continuous.
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J is called the evidence lower bound (ELBO):2 3

J(Q, θ) =
∑
z(n)

Q(z(n)) log pθ(x(n), z(n)) −
∑
z(n)

Q(z(n)) log Q(z(n))

= EQ

[
log pθ(x(n)|z(n))

]
+ EQ

[
log pθ(z(n))

]
− EQ

[
log Q(z(n))

]
Importantly, the ELBO gives a lower bound for the log likelihood:

log pθ(x(n)) ≥ J(Q, θ)

for any choice of Q. (It might be a very crappy lower bound, but it
would be a lower bound nevertheless.)

We can choose a Q that makes it easy to maximize J(Q, θ) in terms
of θ, and then hope that we thereby push up the log likelihood. But
there’s no guarantee that we will be improving the log likelihood.
Except if we are clever in our choice of Q!

The ELBO can also be written as (confirm this for yourself):4

J(Q, θ) = −DKL
(
Q(z(n)) ∥ Pθ(z(n)|x(n))

)
+ log pθ(x(n))

Expectation step

Let’s choose the Q that gives the tightest possible lower bound. Since
DKL ≥ 0, to get the largest J(Q, θ), we choose

Q(z(n)) = Pθ(z(n)|x(n))

This could work, but we actually still don’t know the optimal value of
θ. So instead we use θ(m), our guess for the optimal θ at iteration m.
We denote this choice of Q as

Qθ(m)(z(n)) = Pθ(m)(z(n)|x(n))
2Note that in other literature the ELBO is sometimes denoted as Q, but we

use Q here for the helper function. These two things are very different.
3Also note that J is a functional: It takes another function as an argument.
4The first term is a compression term that encourages a compact latent

representation while the second is a reconstruction term. This shows the trade-off
between compression and reconstruction.
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Note that if we do this, then for the current θ(m), the ELBO is equal
to the log likelihood:

J(Qθ(m) , θ(m)) = log pθ(m)(x(n))

Maximisation step

We now keep Q fixed and maximize the ELBO in terms of θ. At
iteration m + 1:

θ(m+1) = arg max
θ

J(Qθ(m) , θ)

Recall the first form of the ELBO:

J(Q, θ) =
∑
z(n)

Q(z(n)) log pθ(x(n), z(n)) −
∑
z(n)

Q(z(n)) log Q(z(n))

The second term doesn’t depend on θ, so

θ(m+1) = arg max
θ

∑
z(n)

Qθ(m)(z(n)) log pθ(x(n), z(n))

= arg max
θ

∑
z(n)

Pθ(m)(z(n)|x(n)) log pθ(x(n), z(n))

Up to now we have been looking at a dataset with a single item, but
the steps can be repeated when we have N items. We actually then
have to choose a Q(n)(z(n)) separately for each item to get a per-item
term J (n)(Q(n), θ). The sum of these terms give a lower bound on
the log likelihood of the parameters:

N∑
n=1

log pθ(x(n)) ≥
N∑

n=1
J (n)(Q(n), θ)

or more concisely:
L(θ) ≥ J(Q, θ)

with Q now being a set of distributions.
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The EM algorithm
• E-step:

Q
(n)
θ(m)(z(n)) = Pθ(m)(z(n)|x(n))

for n = 1, 2, . . . , N

• M-step:

θ(m+1) = arg max
θ

J(Qθ(m) , θ)

= arg max
θ

N∑
n=1

J (n)(Q(n)
θ(m) , θ)

= arg max
θ

N∑
n=1

∑
z(n)

Pθ(m)(z(n)|x(n)) log pθ(x(n), z(n))
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Why does EM converge?
I said earlier that just pushing up the lower bound is not guaranteed
to push up the log likelihood. But in EM it is actually guaranteed!

This is because after the E-step, the bound is tight:

L(θ(m)) =
N∑

n=1
log pθ(m)(x(n)) = J(Qθ(m) , θ(m))

So the ELBO J is always below the log likelihood L, but at θ(m) they
are equal.

In the M-step, we then maximize J :5

• Guaranteed to give a θ(m+1) with a J greater than or equal to
what it was before:

J(Qθ(m) , θ(m+1)) ≥ J(Qθ(m) , θ(m))

• But because the bound was tight at θ(m), this means that

L(θ(m+1)) ≥ L(θ(m))

θ(m) θ(m+1) θ(m+2)

J(Qθ(m) ,θ)

J(Qθ(m+1) ,θ)

L(θ)

5Figure reproduced from (Murphy, 2012, Fig. 11.15).
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Example: EM for HMMs
The soft EM equations in the the HMM notes can be derived using
the procedure above. The math gets quite hairy! But Tang (2021)
gives a very complete example. You can check that the equations for
the transition probabilities obtained by Tang (2021) matches those in
the HMM note.
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https://github.com/kamperh/nlp817/blob/main/notes/05_hmm_notes.pdf
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