
Hidden Markov models

Herman Kamper

2024-02, CC BY-SA 4.0

Part of speech tagging

HMM definition and notation

The three HMM problems

2. Most likely state sequence: Viterbi

1. Marginal probability of sequence

3. Learning HMM parameters

Use logs: The log-sum-exp trick

HMM topologies

Other aspects of HMMs

1

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

Part of speech tagging
Given input:

this is a simple sentence

the goal is to identify the part of speech (syntactic category) for each
word:

this/DET is/VERB a/DET simple/ADJ sentence/NOUN

I use this task as a running example to introduce HMMs.

The set of part of speech (POS) categories can differ based on the
application, corpus annotators and language.

One universal tag set used by Google (Petrov et al., 2011):

Tag Description Example
VERB Verbs (all tenses and modes) eat, ate, eats
NOUN Nouns (common and proper) home, Micah
PRON Pronouns I, you, your, he
ADJ Adjectives yellow, bigger, wildest
ADV Adverbs quickly, faster, fastest
ADP Adpositions (prepositions of, in, by, under

and postpositions)
CONJ Conjunctions and, or, but
DET Determiners a, an, the, this
NUM Cardinal numbers one, two, first, second
PRT Particles, other function words up, down, on, off
X Other: foreign words, typos, brasserie, abcense, HMM

abbreviations
. Punctuation ?, !, .

2

POS tagging is hard

Ambiguity:

glass of water/NOUN vs water/VERB the plants
lie/VERB down vs tell a lie/NOUN
wind/VERB down vs a mighty wind/NOUN

Sparsity:

• Words we never see
• Word-tag pairs we never see

3

A probabilistic model for tagging
Let xt denote the word and zt denote the tag at time step t.

• Initialisation: z0 = <s>

• Repeat:

– Choose a tag based on the previous tag: P (zt|zt−1)
– If zt = </s>: Break
– Choose a word conditioned on its tag: P (xt|zt)

If we knew all the transition probabilities P (zt|zt−1) and all the emission
probabilities P (xt|zt), we could generate a sentence:

<s> DET NOUN VERB </s>DET NOUN VERB

a cat saw the rats jump

4

Could also represent this with a state diagram:

DET

VERB

</s>

<s>

NOUN

P (a|NOUN)
P (can|NOUN)
P (water|NOUN)

...

P (xt|DET)

P (xt|VERB)

P (VERB|NOUN)

5

HMM definition and notation
A hidden Markov model (HMM) defines a probability distribution over
a sequence of states and output observations:

• Output sequence: x1:T = x1,x2, . . . ,xT . We denote these as
vectors, but they can also be scalars or discrete observations.

• State sequence: z0:T +1 = z0, z1, . . . , zT , zT +1. The integer
variable zt ∈ {0, . . . , K + 1} represents the state at step t.

Often x1:T is observed and z0:T +1 is hidden:

z0 z1 z2 z3 z4 zT+1

x1 x2 x3 x4

This is a directed graphical model representation. Contrast this with
the state diagram drawn earlier.

Why “hidden”? Why “Markov”?

6

An HMM is specified by:

• A set of states: {0, 1, . . . , K + 1}

• Transition probabilities: A with Ai,j = PA(zt = j|zt−1 = i)

• Emission distribution for each state: pϕ(xt|zt)

• Group the parameters together: θ = {A,ϕ}

I denote the emission distributions as continuous, but these can also
be discrete.

The start and end states are special:1

• Always start in z0 = 0.
Transitioning out of this start state is captured by A0,j.

• Always end in zT +1 = K + 1.
Transitioning into this final state is captured by Aj,K+1.

• States 0 and K + 1 are non-emitting.
They don’t produce an x when we move in or out of them.

POS example:

1The classic description of HMMs explicitly defines separate start and end
probabilities, but we don’t need to do this if we use these non-emitting states.

7

The three HMM problems
Problem 1: The marginal probability

Given an observed sequence x1:T and a trained HMM with parameters
θ, what is the probability of the observed sequence pθ(x1:T)?

Problem 2: The most likely state sequence

Given an observed sequence x1:T and a trained HMM with parameters
θ, what is the most likely state sequence through the HMM?

arg max
z0:T +1

Pθ(z0:T +1|x1:T)

Problem 3: Learning

Given training data x1:T , how do we choose the HMM parameters θ
to maximize pθ(x1:T)?2

This is the conventional ordering of the problems (Rabiner and Juang,
1993), but we will do it slightly differently by starting with problem 2.

2In this note I will sometimes be a bit sloppy and drop the dependence of the
distribution on θ (or A or ϕ), but just remember that they are there.

8

2. Most likely state sequence: Viterbi
We want to find the most likely state sequence given the observed
sequence:

arg max
z0:T +1

P (z0:T +1|x1:T) = arg max
z0:T +1

p(x1:T , z0:T +1)
p(x1:T)

= arg max
z0:T +1

p(x1:T , z0:T +1)

We could just calculate p(x1:T , z0:T +1) for every possible state sequence
z0:T +1. But there are KT possible sequences. Instead we use dynamic
programming. (Of course.)

Define
δt(j) ≜ max

z0:t−1
p(x1:t, z0:t−1, zt = j)

These variables can be calculated recursively:

δt(j) = max
z0:t−1

p(x1:t, z0:t−1, zt = j)

= max
z0:t−1

p(xt|x1:t−1, z0:t−1, zt = j) p(x1:t−1, z0:t−1, zt = j)

= max
z0:t−1

p(xt|zt = j)P (zt = j|x1:t−1, z0:t−1) p(x1:t−1, z0:t−1)

= max
z0:t−1

p(xt|zt = j)P (zt = j|zt−1) p(x1:t−1, z0:t−1)

= Kmax
i=1

max
z0:t−2

p(xt|zt = j)P (zt = j|zt−1 = i) p(x1:t−1, z0:t−2, zt−1 = i)

= Kmax
i=1

p(xt|zt = j)P (zt = j|zt−1 = i) max
z0:t−2

p(x1:t−1, z0:t−2, zt−1 = i)

= Kmax
i=1

p(xt|zt = j)Ai,j δt−1(i)

9

Similarly we can show that

P̂ = max
z0:T +1

p(x1:T , z0:T +1) = Kmax
j=1

Aj,K+1 δT (j)

To find the best state sequence, we start with this last equation and
backtrack our steps:

ẑT = Karg max
j=1

Aj,K+1 δT (j)

The next state is determined by looking at the arg max that gave us
δT (ẑT), i.e.

ẑT −1 = Karg max
j=1

p(xT |zT = ẑT)Aj,ẑT
δT −1(j)

and so on.

When calculating δt(j), we normally just store the backtrace (the
arg max), denoted as ψt(j).

10

Viterbi algorithm
• Initialisation:

δ1(j) = p(x1|z1 = j)A0,j

for j = 1, 2, . . . , K

• Recursion:

δt(j) = Kmax
i=1

p(xt|zt = j)Ai,j δt−1(i)

ψt(j) = Karg max
i=1

p(xt|zt = j)Ai,j δt−1(i)

for t = 2, 3, . . . , T and j = 1, 2, . . . , K

• Termination:
P̂ = Kmax

j=1
Aj,K+1 δT (j)

ẑT = Karg max
j=1

Aj,K+1 δT (j)

• Backtracking:

ẑt = Karg max
j=1

p(xt+1|zt+1 = ẑt+1)Aj,ẑt+1 δt(j)

= ψt+1(ẑt+1)
for t = T − 1, T − 2, . . . , 1

11

Example: Viterbi
Transition and emission probabilities:

A =


1.0 0.0 0.0

0.2 0.4 0.4

0.7 0.1 0.2



ϕ =

[
0.6 0.2 0.2

0.1 0.3 0.6

]

C V </s>

<s>

C

V

m oh

C

V

Observed sequence: x1:3 = m o h

12

Calculate the Viterbi variables δt(j):

x1 = m x2 = o x3 = h

0 : <s>

1 : C

2 : V

3 : </s>

13

Calculated Viterbi variables δt(j) with backtracking:

x1 = m x2 = o x3 = h

0 : <s> 1

1 : C ↖ 0.6 ← 0.024 ↙ 0.02016

2 : V ↖ 0 ↖ 0.144 ← 0.00432

3 : </s> 0.008064

Does this example seem familiar?

14

Just finding the shortest path through a DAG

Observation time

State

0

1

2

3

4 = K

5 = K + 1

0 1 2 3 4 5 = T 6 = T + 1

log p(x1|z1 = 1) + logA0,1

logA4,K+1

log p(x3|z3 = 4) + logA4,4

See my separate note on dynamic programming for more details.

Time complexity: In the Viterbi recursion, for each node in the graph,
we need to consider the max over K terms. There are roughly K · T
nodes, which gives O(K2T) terms in the max operations. This is
much better than the O(KT) possible paths.

15

https://www.kamperh.com/notes/kamper_dynamic_programming22.pdf

1. Marginal probability of sequence
We want the probability of a sequence p(x1:T). We will also need this
for solving problem 3.

Marginalising we have:
p(x1:T) =

∑
z0:T +1

p(x1:T , z0:T +1)

We are summing over all possible state sequences. One of these
corresponds exactly to the Viterbi path above. In the summation, this
path will be the one with the highest value P̂ .

Again we could in principle enumerate over all possible sequences,
but in practice there are too many: KT . Again we turn to dynamic
programming. (Of course.)

Define forward variables:
αt(j) ≜ p(x1:t, zt = j)

These variables can be calculated recursively:
αt(j) = p(x1:t, zt = j)

= p(xt|x1:t−1, zt = j) p(x1:t−1, zt = j)

= p(xt|zt = j)
K∑

i=1
p(x1:t−1, zt = j, zt−1 = i)

= p(xt|zt = j)
K∑

i=1
P (zt = j|zt−1 = i) p(x1:t−1, zt−1 = i)

= p(xt|zt = j)
K∑

i=1
Ai,jαt−1(i)

The marginal probability can then be calculated as:

p(x1:T) =
K∑

j=1
Aj,K+1αT (j)

16

Example: Why would we need the marginal?

17

Forward algorithm
• Initialisation:

α0(j) =

1 if j = 0
0 for j = 1, 2, . . . , K

α1(j) = p(x1|z1 = j)A0,j

for j = 1, 2, . . . , K

• Recursion:

αt(j) = p(xt|zt = j)
K∑

i=1
Ai,jαt−1(i)

for t = 2, 3, . . . , T and j = 1, 2, . . . , K

• Termination:

p(x1:T) =
K∑

j=1
Aj,K+1αT (j)

Compare this algorithm to the Viterbi algorithm: The max operations
have just been changed to sums.

The α0(j) initialisation is only used later for solving problem 3 and
not necessary for calculating p(x1:T).

18

Example: Forward algorithm
Calculate the forward variables αt(j):

x1 = m x2 = o x3 = h

0 : <s>

1 : C

2 : V

3 : </s>

Calculated forward variables αt(j) and marginal probability P (x1:3):

x1 = m x2 = o x3 = h

0 : <s> 1

1 : C 0.6 0.024 0.02112

2 : V 0 0.144 0.0072

3 : </s> 0.009888

19

Backward algorithm
We could have alternatively gone in the reverse direction by defining
backwards variables:

βt(j) ≜ p(xt+1:T |zt = j)

which can also be calculated recursively.

• Initialisation:

βT +1(j) =

1 for j = K + 1
0 for j = 1, 2, . . . , K

βT (j) = Aj,K+1

for j = 1, 2, . . . , K

• Recursion:

βt(j) =
K∑

i=1
p(xt+1|zt+1 = i)Aj,i βt+1(i)

for t = T − 1, T − 2, . . . , 0 and j = 1, 2, . . . , K

• Termination:
p(x1:T) =

K∑
j=1

A0,j β0(j)

Again the βT +1(j) initialisation isn’t required for p(x1:T) and only
becomes relevant for solving problem 3.

20

3. Learning HMM parameters
Goal: We want to learn the HMM parameters θ = {A,ϕ} from
training sequences x1:T .

Chicken and egg problem:

• If we were in a supervised setting with a known label sequence
z0:T +1 that goes with training sequence x1:T , then we could just
use maximum likelihood estimation (MLE), e.g.

Âi,j = C(zt = i, zt+1 = j)
C(zt = i)

For POS tagging, this would be like knowing the tags for the
words in your training data.

• If we weren’t given the labelled state sequences but we knew the
HMM parameters θ, then we could find the best state sequence
using Viterbi.

But we have neither labels nor the parameters!

A sketch of expectation-maximisation (EM)

• Initialisation: Choose initial θ(0).

• Recursion: For each iteration m:

– E-step: Compute expected counts using θ(m−1).

– M-step: Set θ(m) by using MLE with the expected counts
from the E-step.

• Termination: Repeat until θ converges (or some other criterion).

We consider two flavours of EM for HMMs.

21

Hard EM: Viterbi re-estimation
If we had the hard assignments of observations xt to states zt, then
the MLE estimates for the HMM parameters θ would be as follows.

• Transition probabilities:

Âi,j = C(zt = i, zt+1 = j)
C(zt = i)

• Emission distributions:

– We collect all the the x’s assigned to state k and then set
ϕk to the MLE.

– If pϕk
(xt|zt = k) is a continuous density, this will be the

MLE for that density.

– If Pϕk
(xt|zt = k) is a discrete probability mass function

for a categorical distribution, then the MLE is

ϕ̂k,c = P (xt = c|zt = k)

= C(zt = k, xt = c)
C(zt = k)

22

The hard EM algorithm

• Initialisation:

– For each training sequence x1:T : Assign a sensible z0:T +1
(what is sensible?)

– Estimate θ(0) using the MLE equations (previous page).

• Recursion: For each iteration m:

– E-step: For each training sequence x1:T :

∗ Apply Viterbi with θ(m−1) to get the optimal state
sequence ẑ0:T +1.

∗ Calculate: P̂ = p(x1:T , ẑ0:T +1)

Accumulate the scores: J (m) = ∑N
n=1 log P̂ (n)

(where n is the index of the training sequence)

– M-step: Use all the optimal state sequences ẑ0:T +1 for all
the training sequences and estimate θ(m) using the MLE
equations (previous page).

• Termination: Compare score J (m) to the previous one J (m−1)

and decide whether to stop.

Although this algorithm uses hard assignments, it is still guaranteed
to converge to a local optimum. This is because every E- and M-step
guarantees that J (m) ≥ J (m−1).

23

Soft EM: Baum-Welch re-estimation
An instance of the forward-backward algorithm. Here we use soft
counts instead of hard assignments.

Define the probability of being in state j at time t:

γt(j) ≜ P (zt = j|x1:T)

which can be calculated as

γt(j) = p(zt = j,x1:T)
p(x1:T)

= p(x1:t,xt+1:T , zt = j)
p(x1:T)

= p(xt+1:T |zt = j,x1:t)p(x1:t, zt = j)
p(x1:T)

= αt(j)βt(j)
p(x1:T)

Define the probability of transitioning from state i at time t to state
j at t+ 1:

ξt(i, j) ≜ P (zt = i, zt+1 = j|x1:T)

which can be calculated as

ξt(i, j) = p(zt = i, zt+1 = j,x1:T)
p(x1:T)

= p(x1:t,xt+1,xt+2:T , zt = i, zt+1 = j)
p(x1:T)

= αt(i)Ai,j p(xt+1|zt+1 = j) βt+1(j)
p(x1:T)

24

The E- and M-steps at iteration m now change to:

• E-step:

– Forward-backward: Calculate all the forward variables αt(j)
and backward variables βt(j) using the current θ(m−1) =
{A(m−1),ϕ(m−1)}.

– Calculate the expected number of transitions out of state
j:

T∑
t=0

γt(j)

– Calculate the expected number of transitions from state i
to j:

T∑
t=0

ξt(i, j)

• M-step:

– Transition probabilities:

Âi,j =
∑T

t=0 ξt(i, j)∑T
t=0 γt(i)

– Emission probability mass function for categorical distribu-
tion:

ϕ̂k,c = P (xt = c|zt = k)

=
∑T

t=1 I{xt = c} γt(k)∑T
t=1 γt(k)

25

Side note: Start and end states

We assume we start in state 0 and end in state K + 1. We therefore
need to be a bit careful with γt(j) when t = 0 and with ξt(i, j) when
t = 0 or t = T .

As one example of these edge cases, we need

γ0(j) =

1 if j = 0
0 otherwise

Fortunately the initialisations for α0(j) and βT +1(j) given earlier
ensure that γt(j) and ξt(i, j) are correct at the start and end of a
sequence. The one additional requirement is that we don’t have a
p(xT +1|zt+1 = j) term in the numerator when calculating ξT (i, j).
(Why not?)

26

Example: Soft and hard EM

• States: {0, 1, 2, 3}

• Output vocabulary: {m, o, h}

• Training sequence: x1:T = m o o m o h o h o

27

Hard EM

m o o m o h o h o

28

Soft EM

m o o m o h o h o

29

Why does EM improve the likelihood?
Log likelihood:

L(θ) =
N∑

n=1
log pθ(x(n)

1:Tn
)

=
N∑

n=1
log

 ∑
z1:Tn

pθ(x(n)
1:Tn

, z
(n)
1:Tn

)
 ≥ ELBO(θ)

Intuitively:

30

Use logs: The log-sum-exp trick
We have seen before that when multiplying many probabilities, we can
get underflow. So let’s work in the log domain! But just taking the
log isn’t enough in this case.

Consider the forward variables:

αt(j) = p(xt|zt = j)
K∑

i=1
Ai,jαt−1(i)

We now switch to working with logαt(j) throughout (and similar for
the other variables):

logαt(j) = log p(xt|zt = j) + log
K∑

i=1
Ai,jαt−1(i)

= log p(xt|zt = j) + log
K∑

i=1
elog Ai,j+log αt−1(i)

But, sadly, the summation for calculating logαt(j) can’t happen in
the log domain. Even with all the required probabilities in the log
domain, we would first have to bring the probabilities back to the
linear domain before summing.

31

The log-sum-exp trick
We often end up having to calculate terms like

log
K∑

k=1
ebk

where we could potentially get underflow/overflow when calculating
ebk .

Luckily we have a trick that allows us to calculate the sum! The
log-sum-exp trick works as follows:

log
K∑

k=1
ebk = log

[
K∑

k=1
ebk−B eB

]

= log eB + log
K∑

k=1
ebk−B

= B + log
K∑

k=1
ebk−B

with B = maxK
k=1 bk.

Now at least we don’t get underflow/overflow from the biggest term in
the summation and hopefully the other terms are also slightly better.

32

HMM topologies

Say Âi,j = 0, i.e. PÂ(zt = j|zt−1 = i) = 0. How will the estimate
Âi,j change during EM training?

Turning off some transitions at initialisation allows us to specify differ-
ent HMM topologies.

Fully connected topology:

Left-to-right topology:

33

Other aspects of HMMs
Smoothing

Some state transitions or some state-output combinations might never
occur in the training data. Similar to what we do with N -gram
language models, we could use smoothing to assign some mass in
P (xt|zt) and P (zt|zt−1) to unseen events.

Extensions of HMMs

• Higher-order HMMs

HMMs today

• Although we looked at POS tagging as a running example in
this note, HMMs are rarely used for supervised or unsupervised
POS tagging today.

• But HMMs are still used in speech recognition:

– HMM-based speech recognition was the standard up to
the early 2010s

– HMMs still used today in hybrid HMM-DNN speech recog-
nition systems

34

Videos covered in this note
• A first hidden Markov model example (14 min)
• Hidden Markov model definition (9 min)
• The three HMM problems (3 min)
• The Viterbi algorithm for HMMs (24 min)
• Viterbi HMM example (19 min)
• Why do we want the marginal probability in an HMM? (7 min)
• The forward algorithm for HMMs (19 min)
• Learning in HMMs (8 min)
• Hard expectation maximisation for HMMs (12 min)
• Soft expectation maximisation for HMMs (20 min)
• Why expectation maximisation works (12 min)
• The log-sum-exp trick (9 min)
• Hidden Markov models in practice (4 min)

Acknowledgements
This note uses content from:

• Johan du Preez’s HMM lectures at Stellenbosch University
• Sharon Goldwater’s NLP course at the University of Edinburgh

References
S. Petrov, D. Das, and R. McDonald, “A universal part-of-speech
tagset,” arXiv, 2011.

L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition,
1993.

H. Tang, “Hidden Markov models (part 1),” University of Edinburgh,
2021.

35

https://youtu.be/pnGCxBjvJW0&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/oGO-2dtE82Q&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/DzkKL9vyZEA&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/u4IBPD43VuY&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/14fC-uo7vD0&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/84LYEt1tIzU&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/n-aVBfVNyDE&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/Psh8fAUYrEM&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/O50_FcUEvZw&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/E6r6w44UYfo&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/_3JzlDjLc6Q&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/MZ2VM32h37g&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://youtu.be/3AGW9uj4uyE&list=PLmZlBIcArwhMIRdgNwFUWGqY53h2TC6PH
https://arxiv.org/abs/1104.2086
https://arxiv.org/abs/1104.2086
https://homepages.inf.ed.ac.uk/htang2/mini-asr/hmm/part1.html

	Part of speech tagging
	POS tagging is hard
	A probabilistic model for tagging

	HMM definition and notation
	The three HMM problems
	Problem 1: The marginal probability
	Problem 2: The most likely state sequence
	Problem 3: Learning

	2. Most likely state sequence: Viterbi
	Viterbi algorithm
	Example: Viterbi
	Just finding the shortest path through a DAG

	1. Marginal probability of sequence
	Example: Why would we need the marginal?
	Forward algorithm
	Example: Forward algorithm
	Backward algorithm

	3. Learning HMM parameters
	A sketch of expectation-maximisation (EM)
	Hard EM: Viterbi re-estimation
	The hard EM algorithm

	Soft EM: Baum-Welch re-estimation
	Side note: Start and end states

	Example: Soft and hard EM
	Hard EM
	Soft EM

	Why does EM improve the likelihood?

	Use logs: The log-sum-exp trick
	The log-sum-exp trick

	HMM topologies
	Other aspects of HMMs
	Smoothing
	Extensions of HMMs
	HMMs today

	Videos covered in this note
	Acknowledgements
	References

