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Entropy
If an outcome has a very low probability, that means that that outcome
carries a lot of information:

• dog bites man
• man bites dog
• it snowed in Chicago
• it snowed in Cape Town

The entropy of a random variable is the average level of information
or uncertainty over the variable’s possible outcomes (Wikipedia).

One way to derive entropy is to list what we want from a definition of
information (Peebles, 2001, p. 80):

• Should be large for outcomes with low probability: 1
P (x=k)

• Information from two independent sources should add

• Decision: Information should be positive and should be 0 for a
certain outcome

• Logarithm is the only function with these properties: log 1
P (x=k)

• Decision: Base 2 since smallest choice is between two

• So information from x = k: log2
1

P (x=k) = − log2 P (x = k)

• Average information over outcomes: E [− log2 P (x)]

The entropy of a discrete random variable x taking on possible out-
comes 1, 2, . . . , K is thus defined as

H(x) , −
K∑

k=1
P (x = k) log2 P (x = k)

With log2 entropy is measured in bits (but can also use other bases).
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Properties:

• Maximum with most uncertainty: Uniform distribution

• Minimum with least uncertainty: All mass on one outcome

• Entropy of a uniform distribution over K outcomes: log2 K

Information-theoretic meaning:

The average length of the shortest description of a random
variable.

Equivalent to:

• The minimum number of bits per outcome (on average) to
encode a source.

• The minimum number of yes/no questions (on average) per
outcome. Questions can be about more than one category,
e.g. “Is the outcome one of the categories {4, 5, 6, 7}?” (see
the uniform horse example below).
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Example: The horse race
Example from (Cover and Thomas, 2006).

We are at a race track and want to send the winning horse of each
race over a binary channel. There are eight horses in a race.

Uniform distribution

The probability of winning is equal over the horses, i.e.

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

One optimal encoding:

Horse Codeword
1 001
2 010
3 011
4 100
5 101
6 110
7 111
8 000

Average number of bits: 3 bits

Does this match the entropy?

H(x) = −
8∑

k=1
P (x = k) log2 P (x = k)

= −
8∑

k=1

1
8 log2

1
8

= 3 bits
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Non-uniform distribution

Now the probabilities of winning are

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64

What is the entropy?

H(x) = −1
2 log2

1
2 −

1
4 log2

1
4 −

1
8 log2

1
8 −

1
16 log2

1
16

− 1
64 log2

1
64 −

1
64 log2

1
64 −

1
64 log2

1
64 −

1
64 log2

1
64

= 2 bits

An encoding achieving this:

Horse Codeword
1 0
2 10
3 110
4 1110
5 111100
6 111101
7 111110
8 111111

Example of prefix code: No codeword is a prefix of any other
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Outcome trees

The above example also illustrates that entropy is the minimum number
of yes/no questions (on average) needed to transmit an outcome.

Yes/no questions for the uniform distribution:

100

000

001

010

011

101

110

111

Yes/no questions for the non-uniform distribution:

111100

111101

111110

111111

1110

110

10

0
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Perplexity
Perplexity can be seen as the weighted number of choices we have to
make for a random discrete variable x:

PP(x) , 2H(x)

Example: The horse race

The perplexity for the two cases in the horse race:

• Uniform distribution: PP(x) = 23 = 8

• Non-uniform distribution: PP(x) = 22 = 4

In the examples below, ask yourself how many outcomes are you really
deciding between.
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Entropy and perplexity examples
Single outcome:

P (x = a) = 1 H(x) = −1 log2 1

= 0 bits

PP(x) = 20

= 1

a

Two equally likely outcomes:

P (x = a) = 0.5

P (x = b) = 0.5

H(x) = −0.5 log2 0.5− 0.5 log2 0.5

= 1 bit

PP(x) = 21

= 2

a

cb
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Four equally likely outcomes:

P (x = a) = 0.25

P (x = b) = 0.25

P (x = c) = 0.25

P (x = d) = 0.25

H(x) = 2 bits

PP(x) = 4

a

b

cc

d

Four non-uniform outcomes:

P (x = a) = 0.7

P (x = b) = 0.1

P (x = c) = 0.1

P (x = d) = 0.1

H(x) = −0.7 log2 0.7− 3 · 0.1 log2 0.1
= 1.35678 bits

PP(x) = 21.35678

= 2.5611

a

b

cc

d
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Four non-uniform outcomes:

P (x = a) = 0.97

P (x = b) = 0.01

P (x = c) = 0.01

P (x = d) = 0.01

H(x) = 0.2419 bits

PP(x) = 1.1826

a

b

cc

d

Four non-uniform outcomes:

P (x = a) = 0.49

P (x = b) = 0.49

P (x = c) = 0.01

P (x = d) = 0.01

H(x) = 1.1414 bits

PP(x) = 2.2060

a

b

cc

d
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Entropy of uniform distribution over K outcomes is log2 K:

H(x) = 0

PP(x) = 1

H(x) = 1

PP(x) = 2

H(x) = 2

PP(x) = 4

H(x) = 3

PP(x) = 8

H(x) = 2.5850

PP(x) = 6

Any non-uniform distribution over K outcomes has lower entropy than
the corresponding uniform distribution:

H(x) = 1.35678

PP(x) = 2.5611

H(x) = 2

PP(x) = 4

H(x) = 0.2419

PP(x) = 1.1826
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Cross entropy
We have two discrete distributions both over possible outcomes
1, 2, . . . , K. The masses of the one distribution are denoted as p
and the other as q. The cross entropy is then defined as

H(p, q) , −
K∑

k=1
Pp(x = k) log2 Pq(x = k)

= −
K∑

k=1
pk log2 qk

The cross entropy is the minimum number of bits on average needed
to encode outcomes coming from source p when we use another model
q to construct the codebook.

The cross entropy is an upper bound on the entropy of the source:

H(p) ≤ H(p, q)

The closer model q is to source p, the closer the cross entropy will be
to the entropy. Stated differently, the better the model, the lower the
cross entropy.

Side note: Information theory and machine learning

• In information theory the goal is to get a good model of the
unknown source P (x) so that we can encode x with the shortest
code.

• In machine learning, the goal is to get a good model of the
unknown real-world distribution P (x) so that we can use it to
make predictions for new x.
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Entropy rate
We’ve looked at the entropy of a single variable. What about se-
quences?

The entropy rate for a random process generating sequences X is
defined as

H(X) = lim
T→∞

− 1
T

H(x1:T )

= lim
T→∞

− 1
T

∑
x1:T

P (x1:T ) log2 P (x1:T )

We normally don’t know the real P (x1:T ). If we have a model θ then
we can calculate the cross entropy rate:

H(p, θ) = lim
T→∞

− 1
T

∑
x1:T

Pp(x1:T ) log2 Pθ(x1:T )

using p to explicitly denote the real-world (unknown) distribution.

We still can’t calculate this since we don’t have infinite sequences. So
we estimate the cross entropy:

H(p, θ) ≈ − 1
T

log2 Pθ(x1:T ) = H(x1:T , θ)

where x1:T is a long sample from Pp(x1:T ), i.e. x1:T ∼ Pp(x1:T ).

H(x1:T , θ) is the notation we use for the estimated cross entropy of
the model θ.1

1I’ve gone a bit crazy in overloading H to mean different things: H(x) for
entropy, H(X) for entropy rate, H(p, q) for cross entropy, and H(x1:T , θ) for
estimated cross entropy. Maybe I should have just written H for all of these and
hope that the context is enough. Sometimes the term “entropy” is also used
interchangeably for all these things.
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This estimated cross entropy is actually what we use to evaluate a
language model θ on some test data x1:T . We normally report the
perplexity:

PP = 2H(x1:T ,θ)

= 2− 1
T

log2 Pθ(x1:T )

= Pθ(x1:T )− 1
T

Side note: Cross-entropy estimate as a Monte Carlo sample

The jump between the equation for cross entropy H(p, θ) and its
estimate H(x1:T , θ) is similar to how we approximate expected values
with Monte Carlo.

Expected values can be approximated (Resnik and Hardisty, 2010):

Ep(x) [f(x)] ≈ 1
L

L∑
l=1

f(x(l))

where x(l) ∼ p(x) are samples from p(x). With a single sample L = 1:

Ep(x) [f(x)] ≈ f(x(1))
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The entropy rate of written English
By using human participants, Shannon (1951) estimated the per-letter
entropy rate of written English:

0.6 ≤ H(x1:T ) ≤ 1.3

Experiment and bound (roughly):

• Subjects were presented with English text and asked to predict
the guess of the next letter (out of 27)

• Used letters rather than words, since sometimes a subject had
to do an exhaustive (27-character) search

• Record the number of guesses to get the correct letter

• Obtained a bound by proving how the number of guesses (a
different random variable) relates to the entropy of English

The estimate is probably low because he used a single text.

But still: What do these estimates imply when thinking of entropy
as the shortest code in bits (yes/no questions), or perplexity as the
weighted branching factor?
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Videos covered in this note
• What are perplexity and entropy? (14 min)

Further reading
For a formal derivation of why entropy is the average length of the
shortest description of a random variable, see Sec. 5.2 and Sec. 5.3
of (Cover and Thomas, 2006). This is a very accessible textbook.

Huffman codes (Cover and Thomas, 2006, Sec. 5.6) give a way to
construct optimal codewords for a given distribution.
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