
Language modelling with N-grams

Herman Kamper

2024-02, CC BY-SA 4.0

The language modelling problem

N-gram language models

Evaluating language models

Smoothing

• Additive smoothing
• Interpolation and back-off
• Kneser-Ney

Exercises

1

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

Speech recognition and autocomplete

Speech recognition

How does Google know I am saying I ate a cherry and not I
eight uh Jerry, although these are acoustically almost indistin-
guishable?1 We could select the sentence that is most probable based
solely on the written words. For this we need to know that:

P (I ate a cherry) > P (I eight uh Jerry)

Autocomplete

How does Microsoft SwiftKey know that the next word that I want
to type is maybe or help? We need to know the probability of an
upcoming word:

P (maybe|Are you keen to)

1https://en.wikipedia.org/wiki/Jerry_Gergich

2

https://en.wikipedia.org/wiki/Jerry_Gergich

The language modelling problem
Generalising the speech recognition example, for a sequence of words
w1:T = w1, w2, . . . , wT we need to know the probability

P (w1, w2, . . . , wT)

For the autocomplete example we need

P (wt|w1, w2, . . . , wt−1)

A model that estimates P (w1:T) or P (wt|w1:t−1) is called a language
model.

How do we calculate P (w1:T)? We repeatedly apply the chain rule of
probability P (A,B) = P (A|B)P (B):

P (w1:T) = P (w1, w2, . . . , wT)
= P (w2, w3, . . . , wT |w1)P (w1)
= P (w3, w4, . . . , wT |w1, w2)P (w2|w1)P (w1)

=
T∏
t=1

P (wt|w1:t−1)

We haven’t actually made any assumptions yet: The above expansion
is exact. So if we knew the true conditional probabilities P (wt|w1:t−1),
we would be done!

But we rarely know the true probabilities. So we need a model that
estimates these conditional probabilities.2

2It is sometimes worth explicitly distinguishing a true probability P (x) from
an estimated probability. I will sometimes use PE(x) or P (x; E) to indicate that
this is a probability from some estimation method E or model with parameters E.
Sometimes I am sloppy and will just write P (x) even when it is an estimate. This
is because we are almost always talking about an estimate.

3

Naive language modelling approach
Let’s say we need

P (will|On day zero the water in Cape Town)

A naive approach would be to take a big corpus of training text and
count how often will follows On day zero the water in Cape
Town:

PMLE(will|On day zero the water in Cape Town)

= C(On day zero the water in Cape Town will)
C(On day zero the water in Cape Town)

C(wn:m) is the count of words wn:m in the training data. This is
actually the maximum likelihood estimate (MLE) of this probability
(see Exercise 1).

Sparsity (again!)

Many long sequences of particular words will never occur in the training
data. Does this mean their probability should be zero? No.

We need to make some assumptions!

4

Towards N-gram language models
Bigram models: Assume that the probability of a given word only
depends on the preceding word:

P (wt|w1:t−1) ≈ Pbi(wt|wt−1)

We still need to decide on a way to actually calculate Pbi(wt|wt−1).
One way would be to again use the MLE:

PMLE(wt|wt−1) = C(wt−1, wt)
C(wt−1)

This addresses the sparsity problem since we only need to look at the
counts of two words occurring together instead of counting very long
sequences of words that are unlikely to occur.

Unigram models: Could define an even simpler model by assuming
that every word just occurs independently:

P (wt|w1:t−1) ≈ Puni(wt)

The MLE:
PMLE(wt) = C(wt)

W

where W is the total number of tokens in the training data. This is a
really dumb bag-of-words model since it completely ignores context or
order. But it might be good enough for some applications.

Trigram models: Could increase the complexity of the bigram model
by looking at two preceding words:

P (wt|w1:t−1) ≈ Ptri(wt|wt−1, wt−2)

The MLE:

PMLE(wt|wt−1, wt−2) = C(wt−2, wt−1, wt)
C(wt−2, wt−1)

5

N-gram language models
We can generalise these models by assuming that the probability of a
given word depends on the N − 1 previous words:

P (wt|w1:t−1) ≈ PN-gram(wt|wt−N+1:t−1)

The MLE:

PMLE(wt|wt−N+1:t−1) = C(wt−N+1:t)
C(wt−N+1:t−1)

All N-gram language models make a Markov assumption: We can
predict the probability of some future observation by only looking a
finite number of observations into the past.

So for the models discussed, N would be:

• Unigram: N = 1
• Bigram: N = 2
• Trigram: N = 3

How do we choose N? This will depend on your application and your
training data. There is a trade-off:

• A higher N allows you to capture more context, but then you
might run into sparsity issues. If you have tons of training data,
then this is maybe okay.

• A smaller N means that sparsity is less of a problem, but now
you are modelling less context.

6

Modelling the start and end of sentences
Let’s say you train a bigram language model and generate some
sentences from the model. We get three sentences:

1. galaxy was far away
2. the force was
3. at the start of the

Are these proper sentences? What is missing?

To capture behaviour at the beginning and the end of sentences, we
need to augment the input. One way to do this is to add tokens
indicating the start and end of the sentences:

1. <s> the galaxy was far away </s>
2. <s> the force was strong with him </s>
3. <s> at the start of the movie he sat down </s>

Concretely, we assume that w0 = <s> and wT+1 = </s>. So for a
bigram model we would have:

P (w0:T+1) = P (w0)
T+1∏
t=1

P (wt|wt−1) =
T+1∏
t=1

P (wt|wt−1)

I will mostly still write the product from 1 to T and write w1:T , but
just remember to deal with the start and end of sentences in this way.

7

Valid probability distribution

There is another reason to add an end-of-sentence token: Without it
we are not defining a proper probability distribution. Without getting
too deep into the details, have a look at the discussion above and
see how we dealt with the sequence length T . The answer is: we
didn’t. But this is a problem, since when you write P (w1:T), the
words w1:T aren’t the only random variables: The length T is also
a random variable. And we didn’t model this at all! By defining an
end-of-sentence symbol, we are implicitly modelling duration. And this
then actually results in a valid probability distribution. See Exercise 2.

Start-of-sentence symbol

The start-of-sentence symbol is also important but for a different
reason. When we write P (w1, w2, . . .), w1 is specifically the variable
for the first word in the sentence, w2 the second word, and so on.
When we make the N-gram assumption, terms for the middle words
in a sentence will be the same irrespective of their position, e.g. in a
bigram LM, P (w5|w4) and P (w6|w5) are determined in the same way.
But the start of the sentence should still be dealt with specifically.
Concretely, a word might have a very high unigram probability in
general but might have a low probability for starting a sentence. The
start-of-sentence symbol addresses this.

8

In practice: Use logs
Multiplying together many numbers that are all smaller than one often
causes numerical underflow.

To deal with this, we almost always calculate probabilities in the log
domain:

log(p1 · p2 · p3 · p4) = log p1 + log p2 + log p3 + log p4

The probability of a sentence w1:T with an N-gram language model:

logPN-gram(w1:T) = log
T∏
t=1

PN-gram(wt|wt−N+1:t−1)

=
T∑
t=1

logPN-gram(wt|wt−N+1:t−1)

9

Evaluating language models: Perplexity
A good language model assigns a high probability to observed sentences
(and a low probability to everything else).

Given a test set w1:T of observed words, we can calculate the perplexity
of model θ:

PP = Pθ(w1:T)− 1
T

The test data w1:T ∼ P (w1:T) is a sample from the real world (with
some unknown distribution). A good language model will have low
perplexity.

As usual, we compute perplexity using logs. This reveals how perplexity
is a per-word negative log likelihood:

log2 PP = − 1
T

T∑
t=1

log2 Pθ(wt|w1:t−1) = Hθ(w1:T)

Foundations in information theory:

• Perplexity is related to the cross-entropy H between a model θ
and the real-world distribution, estimated from a test sample:

PP = 2H(w1:T ,θ)

• Perplexity can be interpreted as the weighted average branching
factor: The number of possible words that can follow any word
(on average).

• More details are given in the Entropy and perplexity note.

10

https://www.kamperh.com/nlp817/notes/04_entropy_perplexity_notes.pdf

Training, validation, testing
We might have some hyperparameters that we need to tune for a
language model. We can use perplexity as a metric to do this. We
follow the standard practice in machine learning:

• Train a model (estimate probabilities) on a training set with
different settings for the hyperparameters.

• Choose the hyperparameter values that give the best perplexity
on validation data.

• After deciding on the final hyperparameter values, report the
final perplexity on test data.

11

https://youtu.be/aXRDdjK-hI4

Example: Comparing language models
Use perplexity to compare language models trained on a single sentence
from Europarl.

Entropy of a trigram language model on a test sentence:

Ptri − log2 Ptri

Ptri(i|<s> <s>) 0.109 3.197
Ptri(would|<s> i) 0.144 2.791
Ptri(like|i would) 0.489 1.031
Ptri(to|would like) 0.905 0.144
Ptri(commend|like to) 0.002 8.794
Ptri(the|to commend) 0.472 1.084
Ptri(rapporteur|commend the) 0.147 2.763
Ptri(on|the rapporteur) 0.056 4.150
Ptri(his|rapporteur on) 0.194 2.367
Ptri(work|on his) 0.089 3.498
Ptri(.|his work) 0.290 1.785
Ptri(</s>|work .) 0.99999 0.000014

Average 2.634

12

Comparison of language models:

Word Unigram Bigram Trigram Four-gram
i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791
like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113
commend 15.487 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978
work 9.993 4.816 3.498 2.394
. 4.896 3.020 1.785 1.510
</s> 4.828 0.005 0.000 0.000

Average 8.051 4.072 2.634 2.251
Perplexity 265.136 16.817 6.206 4.758

13

Unseen N-grams
At test time we might see words that don’t occur in our vocabulary V .
Normally we replace these with <unk>.

But we might have problems even with words that are in our vocabulary.

Example: Zero-count trigrams

We have the following counts for words following denied the in WSJ
Treebank 3:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

If these are the counts, then we will assign the following trigram
probabilities using maximum likelihood:

PMLE(offer|denied the) = 0
PMLE(loan|denied the) = 0

Is this reasonable? Any sentence with the words denied the offer
will be assigned zero probability:

He denied the offer to go to the Supreme Chancellor.

14

Sparsity (again!)

Most N-gram types will never occur. E.g. if we have a vocabulary of
|V| = 50 000 words, then there are (50 000)3 = 1.25 · 1014 unique
possible trigrams. At one byte per trigram type, that takes 125 TB of
space.

Consider the Google N-grams dataset, which can be browsed here:

• Number of words in vocabulary: 13 588 391

• Five-gram types occurring at least 40 times: 1 176 470 663

• But the possible number of five-gram types: 4.63 · 1035

Overfitting

Assigning zero probability to N-grams not seen in the training data
is a form of overfitting to the training data. How do we deal with
overfitting in machine learning? Regularisation.

Language model smoothing are regularisation approaches for N-gram
language models. It typically results in higher perplexity on the training
data, but lower perplexity on evaluation data.

15

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://books.google.com/ngrams

Additive smoothing
Robin Hood: Steal from the rich and give to the poor.

ru
m

or
s

re
p

or
t

off
er

lo
an

d
og · · ·

ru
m

or
s

re
p

or
t

off
er

lo
an

d
og · · ·

al
le

ga
ti

on
s

sp
ec

u
la

ti
on

al
le

ga
ti

on
s

sp
ec

u
la

ti
on

There are different ways of moving probability mass.

Below I give the smoothing equations for bigrams or trigrams, but in
all cases these can be extended to arbitrary N-grams (sometimes with
little effort, sometimes a bit more).

16

Add-one smoothing (Laplace)
Without smoothing, the MLE for bigrams:

PMLE(wt|wt−1) = C(wt−1, wt)
C(wt−1)

Add-one smoothing adds one to each count and normalises appropri-
ately for all possible bigrams:

P+1(wt|wt−1) = C(wt−1, wt) + 1
C(wt−1) + |V|

Need the +|V| in the denominator to ensure that∑
wt∈V

P+1(wt|wt−1) = 1

Example: Berkeley Restaurant Project

We have counts:
C(want) = 927

C(want to) = 608
C(want want) = 0

|V| = 1446
Estimated probabilities for P (to|want) and P (want|want) with and
without add-one smoothing:

PMLE(to|want) = 0.6559
PMLE(want|want) = 0

P+1(to|want) = 0.2566
P+1(want|want) = 0.0004

Problem: We often steal way too much! This is because the |V| in
the denominator can completely overpower C(wt−1). Here we had a
probability go from 0.6559 to 0.2566!

17

Add-α smoothing (Lindstone)
We add 0 < α < 1 to each count and normalise appropriately:

P+α(wt|wt−1) = C(wt−1, wt) + α

C(wt−1) + α|V|

Tune α on validation data.

Absolute discounting
The additional term in the denominator for add-one or add-α smooth-
ing might still screw things up. We also treat N-grams the same
irrespective of how often they occur: Whether an N-gram occurs zero
or a million times, we add 1 or α to the numerator and |V| or α|V| to
the denominator.

Why not treat zero-count N-grams separately from higher-order N-
grams?

Idea: Steal counts from higher-order N-grams without changing the
denominator and then just distribute the left-over mass between zero-
count N-grams.

Absolute discounting steals a constant 0 < d < 1 from each higher-
order N-gram type:

Pabs(wt|wt−1) =

C(wt−1,wt)−d

C(wt−1) if C(wt−1, wt) > 0
p0 if C(wt−1, wt) = 0

To figure out what p0 is, we use the property that probabilities need
to sum to 1. The math gets quite hairy! See Exercise 4.

We could make d a function of the N-gram count, which would allow
you to e.g. steal much more from frequent N-grams and maybe less
from N-grams occurring once or twice. But in practice absolute
discounting (a fixed d) is pretty good already.

18

https://youtu.be/-INzsOxyh7s

Interpolation and back-off
Additive smoothing ignores a useful source of information: Less context
can help when there isn’t sufficient evidence for higher-order context.

Example: Drinking beer in Scotland

We have a corpus with trigram counts:

Scottish beer was: 20
Scottish beer can: 16
Scottish beer awards: 7
Scottish beer brands: 3

These trigrams are never seen:

Scottish beer drinkers: 0
Scottish beer eaters: 0

How would the following estimates differ, given this data? Is this
reasonable?

PMLE(drinkers|Scottish, beer)
PMLE(eaters|Scottish, beer)

But do you think the two bigrams below will have the same count?

beer drinkers
beer eaters

Higher- and lower-order N-gram models have different strengths:

• Higher-order models are more sensitive to context but are based
on sparse counts.

• Lower-order models have more limited context but are based on
reasonable counts.

We look at two approaches to combine models of different orders.

19

Interpolation
Use a mixture of models.

The trigram case:

Pint(wt|wt−2, wt−1) = λ1P1(wt)
+ λ2P2(wt|wt−1)
+ λ3P3(wt|wt−2, wt−1)

For instance:

Pint(drinkers|Scottish beer) = λ1Puni(drinkers)
+ λ2Pbi(drinkers|beer)
+ λ3Ptri(drinkers|Scottish beer)

We need
K∑
k=1

λk = 1

so that ∑
wt∈V

Pint(wt|wt−2, wt−1) = 1

The λ’s are optimised on validation data.

You can combine interpolation with additive smoothing techniques.

20

Back-off
In back-off we use the highest-order model if the count is not zero,
otherwise we back off to a lower-order model.

We need to discount the higher-order models to have mass to spread
to the lower-order models. And then we need to make sure the
probabilities sum to 1.

Back-off N-gram model:

PBO(wt|wt−N+1:t−1) =

Pd(wt|wt−N+1:t−1)

if C(wt−N+1:t) > 0
α(wt−N+1:t)PBO(wt|wt−N+2:t−1)

if C(wt−N+1:t) = 0

where

• Pd(wt|wt−N+1:t−1) is some discounted N-gram model
• Back-off weights α(wt−N+1:t) ensure probability sums to 1

The math for the α’s gets quite hairy! See J&M2.

You can combine back-off with additive smoothing techniques. The
math for the α’s gets quite hairy! See J&M1.

21

Kneser-Ney smoothing
Europarl corpus:

• York occurs 477 times. It is as frequent as foods, indicates
and providers.

• This leads to a relatively high unigram estimate for P (York).

• But York almost always follows New (473 times).

So in unseen bigram contexts, York should have a low probability. But
when we back off or interpolate, this doesn’t happen. For instance:

P (York|<not New>) = λ1Puni(York) + λ2Pbi(York|<not New>)

Because the unigram probability P (York) is high, the resulting
P (York|<not New>) will be high, which is what we do not want.

22

Kneser-Ney: Take diversity of histories into account
Count the number of bigram types ending in wt:

N(•, wt) = |{wt−1 : C(wt−1, wt) > 0}|

Instead of using the unigram MLE

PMLE(wt) = C(wt)∑
w∈V C(w) = C(wt)

W

we use the unique history counts

PKN(wt) = N(•, wt)∑
w∈V N(•, w) = N(•, wt)

N(•, •)

For instance:

PKN(York) = No. bigram types ending in York
No. bigram types ≈ 2

large

PKN(the) = No. bigram types ending in the
No. bigram types ≈ relatively large

large

We need to get some extra mass from somewhere. We get this by
combining absolute discounting with interpolation:

PKN(wt|wt−1) = max {C(wt−1, wt)− d, 0}
C(wt−1)

+ λ(wt−1)PKN(wt)

In the higher-order case we will have even more λs. The math for the
λs gets quite hairy! See J&M3.

23

N-gram language models today
In many NLP applications today there is a move to neural language
models (later).

But N-gram language models are still used!

• Strong baseline in automatic speech recognition

• Easy to incorporate into decoder

• If you are searching for specific keywords, can easily push up
their mass (and discount the rest)

• Normally use large context e.g. five-gram

N-gram language modelling toolkits:

• SRILM
• KenLM

24

http://www.speech.sri.com/projects/srilm/
https://github.com/kpu/kenlm

Exercises
Exercise 1: Why are the normalised counts the MLE?

I state that for an unsmoothed bigram model, the MLE is

PMLE(wt|wt−1) = C(wt−1, wt)
C(wt−1)

Say we have a training set of a single observed word sequence w1:T
and we fit an unsmoothed bigram language model. Prove that the
above equation is indeed the MLE.

Hint: What are the model parameters? Define these as θj|k =
Pbi(wt = j|wt−1 = k) and minimise the negative log likelihood of the
parameters with the constraint that ∑

j θj|k = 1.

25

Exercise 2: Why we need a end-of-sentence symbol3

We are going to be a bit formal. Let’s say we have a language with
a vocabulary V = {a, b, <s>, </s>}. The set of possible sentences in
this language is denoted as V+. For a language model to give a valid
probability distribution, we need∑

w1:T∈V+
Pθ(w1:T) = 1

where w1:T denotes a particular sentence in this language.

Given the training corpus without an end-of-sentence token:

<s> a a
<s> a b
<s> b a
<s> b b

the set of all possible sentences would be

V+ = {<s> a, <s> b, <s> a a, <s> a b, <s> b a,
<s> b b, <s> a a a, . . .}

Train an unsmoothed bigram language model on the above training
corpus. Show that this language model does not give a valid probability
distribution over all sentence lengths.

Now repeat the above question but on the following training corpus,
which does include an end-of-sentence symbol </s>:

<s> a a </s>
<s> a b </s>
<s> b a </s>
<s> b b </s>

For this case show that we get a language model that does give a
valid probability distribution.

3Adapted from Exercise 3.5 in J&M3.

26

Exercise 3: Bigram language model

Given the corpus:

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

What is the MLE estimate of P (am|I)?

(a) 0 (b) 1 (c) 2
3 (d) 3

2 (e) 1
2

Exercise 4: Absolute discounting

In bigram absolute discounting, prove that zero-count bigrams with
history word wt−1 are all assigned the probability

p0 = 1
C0

∑
r>0

[
Cr ·

d

C(wt−1)

]

where Cr = |{v : C(wt−1, v) = r}| are the number of bigram types
with history word wt−1 occurring exactly r times.

27

Videos covered in this note
• The language modelling problem (10 min)
• N-gram language models (13 min)
• Start and end of sentence tokens in language models (11 min)
• Why use log in language models? (4 min)
• Evaluating language models using perplexity (9 min)
• Language model smoothing intuition (6 min)
• Additive smoothing in language models (10 min)
• Absolute discounting in language models (5 min)
• Language model interpolation (11 min)
• Language model backoff (4 min)
• Kneser-Ney smoothing (8 min)
• Are N-gram language models still used today? (2 min)

Acknowledgements
This note uses content from:

• Jan Buys’ NLP course at the University of Cape Town
• Sharon Goldwater’s NLP course at the University of Edinburgh

References
S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” Computer Speech and Language, 1999.

M. Collins, “Language modelling,” Columbia University, 2013.

28

https://youtu.be/6TjmCP7TDOg&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/SLsLEYZJ2xU&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/S1t-aac0K58&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/l5RgDfA2R-w&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/72eVFb7USKs&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/hU3NjSMC8uI&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/zHU6IptBdJU&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/g-VSL7Bu5Po&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/HHzUTUbmG4k&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/DdvJ6Vd4EHg&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/9SlJ76HtjoE&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
https://youtu.be/YwtyFWFuVKs&list=PLmZlBIcArwhP-ril7Xe5vDNpdMEgOjppP
http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf

	Speech recognition and autocomplete
	Speech recognition
	Autocomplete

	The language modelling problem
	Naive language modelling approach
	Sparsity (again!)

	Towards N-gram language models
	N-gram language models
	Modelling the start and end of sentences
	Valid probability distribution
	Start-of-sentence symbol

	In practice: Use logs
	Evaluating language models: Perplexity
	Training, validation, testing
	Example: Comparing language models

	Unseen N-grams
	Example: Zero-count trigrams
	Sparsity (again!)
	Overfitting

	Additive smoothing
	Add-one smoothing (Laplace)
	Example: Berkeley Restaurant Project

	Add-\alpha smoothing (Lindstone)
	Absolute discounting

	Interpolation and back-off
	Example: Drinking beer in Scotland
	Interpolation
	Back-off

	Kneser-Ney smoothing
	Kneser-Ney: Take diversity of histories into account

	N-gram language models today
	Exercises
	Exercise 1: Why are the normalised counts the MLE?
	Exercise 2: Why we need a end-of-sentence symbol
	Exercise 3: Bigram language model
	Exercise 4: Absolute discounting

	Videos covered in this note
	Acknowledgements
	References

