
Text normalisation, units and edit
distance

Herman Kamper

2024-07, CC BY-SA 4.0

Text normalisation

Tokenisation and units

Words

Subword units

Edit distance

Common misconceptions

1

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

Robotic instruction following

We want to instruct the robot with natural language commands like:1

1. Move forward to the chair and then turn left.

2. Go 2 spaces and check if there is a coat stand.

The dumbest NLP solution

• Collect dataset of (X, y) pairs, each X = x1:T an input instruc-
tion and y the command the robot should execute

• Gives set of training pairs: {(X(n), y(n))}N
n=1

• For new input, find the closest input in the training set and
predict its label y, i.e. one-nearest neighbour classification

1Figure by Ryan Eloff.

2

To do this, we need to figure out:

• How should we preprocess the data?

– Should we map 2 to two or the other way around in input
sentences?

– Is punctuation important?
– Can we lowercase everything?

• What is our basic modelling unit?

– What is each xt in the input sequence x1:T ?
– Words, characters or maybe something in between?

• How do we measure the distance between two sequences?

– Is the input word forward more similar to forwds or to
reverse?

3

Text normalisation
Text normalisation is the task of converting text to a consistent,
standardised form appropriate for the task at hand.

Normalisation rules have to deal with things like:

• Punctuation: Can often remove, but sometimes it is useful,
e.g. full stops indicating the end of a sentence. Need to decide
whether we keep punctuation in abbreviations, numbers, dates,
hyphenated words, etc.

• Abbreviations: m.p.h. or miles per hour? Ph.D. or PhD?
USA or US?

• Numbers and prices: R55,000.50 or R55 000.50 or
R55000.50 or R55000,50 or fifty-five-thousand rand
and fifty cents?

• Dates: 13/04/22 or 13 April 2022?

• URLs (http://www.kamperh.com), email addresses
(someone@ed.ac.uk), hashtags (#nlproc), and emoti-
cons :)

• Clitic contractions: what're or what are or what 're?

• Casing: We might want to lowercase everything, but it could
also be useful to keep capitalisation, e.g. to identify names like
Stellenbosch or San Francisco.

• Multi-word expressions: New York-based, $37-a-share

Text normalisation rules are often implemented with regular expressions
(J&M3, Sec. 2.1).

4

Task-specific

Unfortunately there isn’t a single set of text normalisation rules that
can be applied across all settings. The normalisation scheme should
match your specific task. There are some standards, e.g. the Penn
Treebank tokenisation or NIST’s tools for ASR text normalisation, but
you can’t apply these blindly without regard to the NLP task at hand.

5

https://www.nist.gov/itl/iad/mig/openasr-challenge

Tokenisation and units
Tokenisation involves breaking up the input stream into the units we
will model, i.e. constructing x1:T from the (normalised) input.

Say we have the following input:

turn right at the door

One obvious tokenisation would be to just split at spaces between
words:

["turn", "right", "at", "the", "door"]

But we could also just use characters as our modelling unit:

["t", "u", "r", "n", " ", "r", "i", "g", "h", ...]

Let us first talk about words and then return to the question of which
units to use.

6

Words
Word tokens and types

• Word type: A unique word class
• Word token: Instance of a word of a specific type

Can have multiple word tokens of the same type occurring in a text.

How many word types and tokens are in this sentence?

a cat and a brown dog chase a black dog

Answer: 7 types and 10 tokens

Word counts

In 10k sentences from the English Wikipedia dump, there are 194 207
word tokens from 24 183 types. The most frequent words are listed
below.

Any word:

Count Word Rank
12 336 the 1

7384 of 2
6561 and 3
4655 in 4
4305 to 5
3322 a 6
1959 is 7
1743 as 8
1627 The 9
1483 that 10

7

https://dumps.wikimedia.org/

Nouns:

Count Word
419 Apollo
379 state
276 Lincoln
240 Alaska
231 time
230 Agassi
215 Alabama
179 century
170 use
153 anthropology

8

Zipf’s law
The frequency of a word is inversely proportional to its rank:

f ≈ c

r

where f is the word frequency, r the rank, and c some constant.

This is linear on a plot with the frequency and rank axes on log scales.
Why? Because

log f ≈ log c− log r

which looks like
y ≈ k − x

9

On English:

10

An empirical law that holds for all languages. On different languages
from the Wikipedia dumps:

NLP challenge: Sparsity

Most words will be used infrequently, but we still need to be able to
deal with them. This is a challenge when using machine learning since
your training data might only have one or two occurrences of most
words (or maybe even zero!), but we still need to be able to handle
these words at test time.

11

https://dumps.wikimedia.org/

What’s so special about words?
You might think that the idea of a “word” is pretty obvious. But this
is not really the case.

English: How many words in didn't, New York, high-risk,
@stellenboschuniversity?

Afrikaans and German: Form words using agglutination

• satellietnavigasiestelsels (af)
• K-gemiddeldestrosvormingalgoritme (af)
• computerlinguistikvorlesung (de)

isiZulu: Morphologically rich

• wukutholakala = wu+u+ku+thol+akal+a

Chinese: Written without spaces

Chinese characters are meaning-bearing units (normally morphemes)
that combine into words, but there is no standard definition of a word.

YaoMing reaches finals
姚明 进入 总决赛

Yao Ming reaches overall finals
姚 进入 总明 决赛

Yao Ming enter enter overall decision game
姚 进 总明 决 赛入

姚明进入总决赛
Yao Ming reaches the finals

12

So which units should we use in our NLP system?

• Looked at using words or characters as units

• Words have sparsity problems but also a lot of structure (a single
word gives meaning)

• Characters don’t have structure (a single Latin script character
gives no meaning) but don’t suffer from sparsity (why not?)

• Maybe there is something in between these two extremes with
some structure but less sparsity?

13

Subword units: Morphology
Morpheme: The smallest meaning-bearing unit of a language

unlikeliest = un+likely+est

Morphology: Study of how words are built up from morphemes

de+salin+ate+ion and not ate+salin+ion+de

In some languages, morphology matters a lot:

ru: zhenshina devochke dala knigu
en: the woman gave the girl a book

ru: zhenshine devochka dala knigu
en: the girl gave the woman a book

Types of morphemes

• Stems: Central morpheme giving a word its main meaning,
e.g. fox, cat, small, walk

• Affixes: Added on to give additional meaning, e.g.

– Suffix: +s, +ed

– Prefix: un+

– Inflex: +bloody+, uit+ge +eet (af)

– Circumfix: ge +sag+t (de)

14

Example: isiXhosa children’s book

15

Stems vs lemmas

• Lemma: Canonical form (dictionary form) of a set of words

– am, are, is have the lemma be.

– fly, flies, flew, flying have the lemma fly.

– walk, walks, walked, walking have the lemma walk.

– walker, walkers have the lemma walker.

• Stem: Part of the word that is common to all its variants (there
are also other definitions)

– produce, production have the stem produc.

– walk, walks, walked, walking, walker, walkers have
the stem walk.

– Do fly, flies, flew, flying have a common stem fl?
Or maybe only fly and flying share the stem fly? The
decision will depend on the application.

• Lemmatisation and stemming are both NLP tasks

– Porter stemmer: Rule-based and fast but crude (J&M3,
Sec. 2.4.4)

16

Byte-pair encoding (BPE)
Instead of morphemes, subword units can also be learned automat-
ically from a text corpus. There are several approaches including
SentencePiece and byte-pair encoding (BPE).

We will look at BPE, probably one of the most popular approaches.
BPE first learns the units and then applies them to new data.

Token learner algorithm

• Initialisation:

– Vocabulary V ← unique characters in text
– Tokenise text into separate characters

• for iteration i = 1 to K:

– Find most frequent pair of adjacent tokens: tL, tR

– Merge tokens: tnew = tLtR

– Add to vocabulary: V ← V ∪ {tnew}
– Replace all occurrences of tL, tR in text with tnew

Token segmenter

Apply on the data the merges we learned on the training data in the
order we learned them.

17

https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1508.07909

BPE example
Corpus:

low low low low low
lower lower
newer newer newer newer newer newer
wider wider wider
new new new

The corpus has 19 word tokens from 5 word types.

18

• iteration i = 1:

– Find most frequent pair of adjacent tokens: tL, tR

– Merge tokens: tnew = tLtR

– Add to vocabulary: V ← V ∪ {tnew}
– Replace all occurrences of tL, tR in text with tnew.

l o w _ l o w _ l o w _ l o w _ l o w _
l o w e r _ l o w e r _
n e w e r _ n e w e r _ n e w e r _ n e w e r _ n e w e r _
n e w e r _
w i d e r _ w i d e r _ w i d e r _
n e w _ n e w _ n e w _

19

• iteration i = 2:

– Find most frequent pair of adjacent tokens: tL, tR

– Merge tokens: tnew = tLtR

– Add to vocabulary: V ← V ∪ {tnew}
– Replace all occurrences of tL, tR in text with tnew.

l o w _ l o w _ l o w _ l o w _ l o w _
l o w er _ l o w er _
n e w er _ n e w er _ n e w er _ n e w er _ n e w er _
n e w er _
w i d er _ w i d er _ w i d er _
n e w _ n e w _ n e w _

20

• iteration i = 3:

– Find most frequent pair of adjacent tokens: tL, tR

– Merge tokens: tnew = tLtR

– Add to vocabulary: V ← V ∪ {tnew}
– Replace all occurrences of tL, tR in text with tnew.

l o w _ l o w _ l o w _ l o w _ l o w _
l o w er_ l o w er_
n e w er_ n e w er_ n e w er_ n e w er_ n e w er_
n e w er_
w i d er_ w i d er_ w i d er_
n e w _ n e w _ n e w _

21

Iteration: 1
5: l o w </w>
2: l o w e r </w>
6: n e w e r </w>
3: w i d e r </w>
3: n e w </w>
Merge: ("e", "r")

Iteration: 2
5: l o w </w>
2: l o w er </w>
6: n e w er </w>
3: w i d er </w>
3: n e w </w>
Merge: ("er", "</w>")

Iteration: 3
5: l o w </w>
2: l o w er</w>
6: n e w er</w>
3: w i d er</w>
3: n e w </w>
Merge: ("n", "e")

...

Iteration: 7
5: low </w>
2: low er</w>
6: new er</w>
3: w i d er</w>
3: new </w>
Merge: ("new", "er</w>")

22

Edit distance
Given two symbolic sequences, how similar are they?

The edit distance is the minimum number of changes needed to
convert one sequence to the other.

It is also called the Levenshtein distance.

Edit distance between stall and table:

s t a l l
t a l l # deletion
t a b l # substitution
t a b l e # insertion

The edit distance between stall and table is therefore 3, if we let
deletions, substitutions and insertions all cost 1.

We often use a higher penalty for substitutions. (Why?) If we use a
penalty of 2 for substitutions and 1 for deletions and insertions, the
edit distance would be 4.

One way to determine the edit distance is to find the best alignment
between the sequences.

23

Example: Alignment costs between stall and table

Let wdel = wins = 1 and wsub = 2. Below are example alignments
between stall and table with their alignment costs. The edit
distance is the optimal alignment: a cost of 4 in this case. There are
a few optimal alignments, all with a cost of 4.

Converting x1:N = stall into y1:N = table:

s t a - l - l
S D | I | I D
t - a b l e - # cost: 6

s t a l - l -
D D S S I | I
- - t a b l e # cost: 8

s t a l l -
D | | S | I
- t a b l e # cost: 4

s t a - l l
D | | I | S
- t a b l e # cost: 4

24

Brute force alignment
One solution to calculating the edit distance is to consider all possible
alignments and pick the one with the lowest cost out of all the options.

But how many possible alignments are there?

-,t

-,a

s,a

s,-

- -
I I
t a

- s
I S
t a

-
I
t ins

sub

del

s,t

-,a

t,a

t,-

ins

sub

del

s,-

-,t

t,t

t,-

s t
D |
- t

ins

del
s
D
-

s
S
t

sub

ins

del

s t
D D
- -

Roughly O(3N)-ish. The number of alignments grows exponentially
with the length of the sequences!

So rather than brute force, we use a dynamic programming algorithm:
Break the problem down into simpler sub-problems and then solve
recursively (Wikipedia). Note that the algorithm below is guaranteed
to give the optimal alignment: there are no approximations.

25

https://en.wikipedia.org/wiki/Dynamic_programming

Edit distance algorithm
• Inputs: x1:N to be converted into y1:M

• Cost matrix: D ∈ R(N+1)×(M+1)

• Initialisation:

D0,0 = 0
Di,0 = Di−1,0 + wdel for i = 1, 2, . . . , N

D0,j = D0,j−1 + wins for j = 1, 2, . . . , M

• Recursion:

Di,j =

Di−1,j−1 if xi = yj

min

Di−1,j + wdel

Di,j−1 + wins

Di−1,j−1 + wsub

if xi ̸= yj

for i = 1, 2, . . . , M and j = 1, 2, . . . , N

• Backtracking: From DN,M to D0,0

Sometimes referred to as the Wagner-Fischer algorithm.

26

https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm

Example: Align stall to table

wdel = 1, wins = 1 and wsub = 2

Cost matrix:

t a b l e

0 ← 1 ← 2 ← 3 ← 4 ← 5

s ↑ 1 ←↖↑ 2 ←↖↑ 3 ←↖↑ 4 ←↖↑ 5 ←↖↑ 6
t ↑ 2 ↖ 1 ← 2 ← 3 ← 4 ← 5

a ↑ 3 ↑ 2 ↖ 1 ← 2 ← 3 ← 4

l ↑ 4 ↑ 3 ↑ 2 ←↖↑ 3 ↖ 2 ← 3

l ↑ 5 ↑ 4 ↑ 3 ←↖↑ 4 ↖↑ 3 ←↖↑ 4

Backtrace path:

t a b l e

0 ← 1 ← 2 ← 3 ← 4 ← 5

s ↑ 1 ←↖↑ 2 ←↖↑ 3 ←↖↑ 4 ←↖↑ 5 ←↖↑ 6
t ↑ 2 ↖ 1 ← 2 ← 3 ← 4 ← 5

a ↑ 3 ↑ 2 ↖ 1 ← 2 ← 3 ← 4

l ↑ 4 ↑ 3 ↑ 2 ←↖↑ 3 ↖ 2 ← 3

l ↑ 5 ↑ 4 ↑ 3 ←↖↑ 4 ↖↑ 3 ←↖↑ 4

D2,2 = d(st, ta) D2,3 = d(st, tab)

D3,2 = d(sta, ta) D3,3 = d(sta, tab)

Time complexity: Calculate O(NM) values in cost matrix

27

Why is this guaranteed to give the optimal alignment?

Each cell Di,j is the smallest cost to align x1:i to y1:j. Why?

Let’s say I knew the edit distances for:

• d(stall, tabl)
• d(stal, table)
• d(stal, tabl)

Then I could get the edit distance of d(stall, table). This would
be exact, without any approximation!2

d(stall, table)

d(stal, table)

wdel

wins

wsub

d(stal, tabl)

d(stall, tabl)

This also holds for the non-final steps. The edit distance algorithm
uses this as its smallest subproblem. The solution to each subproblem
is stored, and then used to solve and store the solutions to larger
subproblems until we get the final solution (the best overall alignment).

2Substitutions and insertions are sometimes easier to see than deletions. I
unpack deletions specifically under common misconceptions.

28

More on the edit distance
Advanced edit distance

• Can give different weight w depending on the symbols involved
• Local alignment variants: Find subsequences that align well
• Dynamic time warping: Align continuous signals

Applications of edit distance

• Computational biology: Aligning sequences of nucleotides
• Spelling correction
• Speech recognition: Calculating word error rate

Dynamic programming in general

The edit distance algorithm is an instance of dynamic programming –
a more general class of algorithms. Dynamic programming can always
be reduced to finding the optimal path through a directed acyclic
graph. The graph for the edit distance algorithm:

t
wins

wdel
wsub

a eb l

s

t

a

l

l

29

https://www.youtube.com/watch?v=ZeBKBP4dbtA
https://www.youtube.com/playlist?list=PLmZlBIcArwhMJoGk5zpiRlkaHUqy5dLzL

Common misconceptions
Deletions in the edit distance graph

Students (and I myself) sometime struggle to understand the deletion
edge in the dynamic programming graph fragment:

d(stall, table)

d(stal, table)

wdel

wins

wsub

d(stal, tabl)

d(stall, tabl)

Forget about the graph for a second. Imagine I told you that to covert
stal into table takes 3 edits (acting optimally). Now I ask you to
covert stall into table. Here’s one way (it might not be the optimal
way):

• Delete the last l in stall: stal (1 deletion)
• Now convert stal into table (I told you this will take 3 edits)

So I know I convert stall to table with 1 + 3 = 4 edits, by just
adding one deletion.

There might be a better way to convert stall to table, but if
d(stal, table) = 3, then we know that d(stall, table) will at
worst be 4.

This is what the wdel edge corresponds to in the graph fragment.

30

Videos covered in this note
• A first NLP example (8 min)
• Text normalisation and tokenisation (8 min)
• Words (12 min)
• Morphology (5 min)
• Stems and lemmas (3 min)
• Byte-pair encoding (BPE) (9 min)
• Edit distance (20 min)

Further reading
I have a separate note that describes dynamic programming more
generally.

Acknowledgements
This note uses content from:

• Jan Buys’ NLP course at the University of Cape Town
• Sharon Goldwater’s NLP course at the University of Edinburgh

31

https://youtu.be/k4Co_47zeO4&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/Y2FBKCwww50&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/o_v279Ip4GU&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/zMMrn7BZefc&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/DWsiL01hMwk&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/20xtCxAAkFw&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://youtu.be/C2cRO9BqlZw&list=PLmZlBIcArwhOqEQwyk2TBHmtEKTGPMu5d
https://www.kamperh.com/notes/kamper_dynamic_programming22.pdf

	Robotic instruction following
	The dumbest NLP solution

	Text normalisation
	Task-specific

	Tokenisation and units
	Words
	Word tokens and types
	Word counts

	Zipf's law
	NLP challenge: Sparsity

	What's so special about words?
	So which units should we use in our NLP system?

	Subword units: Morphology
	Types of morphemes
	Example: isiXhosa children's book
	Stems vs lemmas

	Byte-pair encoding (BPE)
	Token learner algorithm
	Token segmenter

	BPE example

	Edit distance
	Example: Alignment costs between stall and table
	Brute force alignment
	Edit distance algorithm
	Example: Align stall to table
	Why is this guaranteed to give the optimal alignment?

	More on the edit distance
	Advanced edit distance
	Applications of edit distance
	Dynamic programming in general

	Common misconceptions
	Deletions in the edit distance graph
	Videos covered in this note
	Further reading
	Acknowledgements

