Multiclass logistic regression

Herman Kamper

http://www.kamperh.com/

One-us-rest classification

Strategy: Train three classifiers with y \{20,1}, where each classifier considers another class as the positive class.

Ne then get three classification models:

f₁(x;w₁)

f₂(x;w₂)

f₃(x;w₃)

3: []

Final predictions: arg max of (=; wk

Iris dataset

One-vs-rest decision boundary

Softmax regression

- For binary logistic regression we had $f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}}}$ with $y \in \{0, 1\}$.
- We interpreted the output as $P(y=1|\mathbf{x};\mathbf{w})$, implying $P(y=0|\mathbf{x};\mathbf{w})=1-f(\mathbf{x};\mathbf{w})$.
- For the multiclass setting we now have $y \in \{1, 2, \dots, K\}$.
- Idea: Instead of just outputting a single value for the positive class, let's output a vector of probabilities for each class:

$$f(\mathbf{x}; \mathbf{W}) = \begin{bmatrix} P(y = 1|\mathbf{x}; \mathbf{W}) \\ P(y = 2|\mathbf{x}; \mathbf{W}) \\ \vdots \\ P(y = K|\mathbf{x}; \mathbf{W}) \end{bmatrix}$$

We will now build up to a model that does this.

Softmax regression

- Each element in f(x; W) should be a "score" for how well input x matches that class.
- For input x, let's set the score for class k to $\mathbf{w}_k^{\top} \mathbf{x}$.
- But probabilities need to be positive. So let's take the exponential: $e^{\mathbf{w}_k^{\top}\mathbf{x}}$.
- But probabilities need to sum to one. So let's normalise:

$$P(y = k | \mathbf{x}; \mathbf{W}) = \frac{e^{\mathbf{w}_k^{\top} \mathbf{x}}}{\sum_{j=1}^{K} e^{\mathbf{w}_j^{\top} \mathbf{x}}}$$

• This gives us the softmax regression model:

Parameters:

Vectors w, w,, w, ..., wk

Parameter matrix:

$$\begin{bmatrix}
-(w,)^T - \\
-(w$$

Optimisation

• Fit model using maximum likelihood. Equivalent to minimising the negative log likelihood:

$$J(\mathbf{W}) = -\log L(\mathbf{W})$$

$$= -\sum_{n=1}^{N} \log P(y^{(n)}|\mathbf{x}^{(n)}; \mathbf{W})$$

$$= -\sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}\{y^{(n)} = k\} \log \frac{e^{\mathbf{w}_{k}^{\top} \mathbf{x}^{(n)}}}{\sum_{j=1}^{K} e^{\mathbf{w}_{j}^{\top} \mathbf{x}^{(n)}}}$$

Derivatives:

$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{w}_k} = -\sum_{n=1}^{N} \left(\mathbb{I}\{y^{(n)} = k\} - f_k(\mathbf{x}^{(n)}; \mathbf{W}) \right) \mathbf{x}^{(n)}$$

Using these derivatives, we can minimise the loss using gradient descent.

Softmax regression decision boundary

Output representation

Sometimes it is convenient to represent the target output as a *one-hot vector*:

$$\mathbf{y}^{(n)} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{k} & \mathbf{k} \\ 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^{\top}$$

This one-hot vector has a one in the position $y_k^{(n)}$ if $\mathbf{x}^{(n)}$ is of class k, with zeros everywhere else. This is a convenient representation for the target output, since it allows us to vectorise algorithms. We can then write the loss and gradient as:

$$J(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_k^{(n)} \log \frac{e^{\mathbf{w}_k^{\top} \mathbf{x}^{(n)}}}{\sum_{j=1}^{K} e^{\mathbf{w}_j^{\top} \mathbf{x}^{(n)}}}$$
$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{w}_k} = -\sum_{n=1}^{N} \left(y_k^{(n)} - f_k(\mathbf{x}^{(n)}; \mathbf{W}) \right) \mathbf{x}^{(n)}$$

Relationship between softmax and binary logistic regression

• For the special case that K=2, you can show that softmax regression reduces to:

$$f(\mathbf{x}; \mathbf{W}) = \begin{bmatrix} \frac{1}{1 + \exp\{(\mathbf{w}_1 - \mathbf{w}_2)^{\top} \mathbf{x}\}} \\ 1 - \frac{1}{1 + \exp\{(\mathbf{w}_1 - \mathbf{w}_2)^{\top} \mathbf{x}\}} \end{bmatrix}$$

- ullet So the model only depends on $\mathbf{w}_2 \mathbf{w}_1$, a single vector.
- We can replace this vector with $\mathbf{w}' = \mathbf{w}_2 \mathbf{w}_1$, and only need to fit \mathbf{w}' .
- This is equivalent to binary logistic regression.