# K-means clustering

Algorithm

Herman Kamper

http://www.kamperh.com/

- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.

#### Example: K=3

- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K:
    Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.

Iteration: 1 (item assignment)

- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K:

    Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:

    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K:

    Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k=1 to K: Calculate the cluster centroid  $\mu_k$  as the mean of all the items assigned to cluster k.
  - (b) for item n = 1 to N:
    Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.



# K-means clustering

Details and loss

Herman Kamper

http://www.kamperh.com/

# K-means clustering algorithm details

- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- 2. repeat until cluster assignments stop changing:
  - (a) for cluster k = 1 to K:
  - (b) for item n=1 to N: Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.  $\text{arg}_{\mathbf{x}^{(n)}} = \mathbf{x}^{(n)} - \mathbf{x}_{\mathbf{x}^{(n)}} = \mathbf{x}^{(n)}$

Ck: Set of indices of items assigned to cluster k

e.g.  $C_u = \begin{cases} 205, (2,303) \\ 2(205) \end{cases}$ 

# K-means clustering algorithm details

- 1. Randomly assign each item  $\mathbf{x}^{(n)}$  to one of the K clusters.
- - mean of all the items assigned to cluster k.
  - (b) for item n=1 to N:

for item n=1 to N:
Assign item  $\mathbf{x}^{(n)}$  to the cluster with the closest centroid.

Cluster assignments:

Update  $C_1, \ldots, C_K$  while keeping  $M_1, \ldots, M_K$  fixed

# Random initialisation leads to different local optima

Sum of squared distances to centroids: 68.26



Sum of squared distances to centroids: 66.97

