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Classification

From regression to classification:

e Regression: Predict scalar output y € R given input x

e Classification: Predict categorical class label y given input x

Examples:

e Disease diagnoses: Classifying whether a patient is healthy or not
e Text classification: Classifying documents according to topic

e Fault diagnoses: Is a photovoltaic system/antenna operating as expected or not?



arget output

Classification: Predict categorical class label y given input x

Data: In {(x™),y(™)}N_, the label y™ should tell us which class x(™) belongs to
There is a number of ways to encode y numerically

Binary classification: y € {0,1} or y € {—1,1}

Classification among K classes: y € {1,2,..., K}



Iris flower dataset

s_flower_data_set

Source: https://en.wikipedia.org/wiki/Iri
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K -nearest neighbours (KNN)

Source: https://commons.wikimedia.org/wiki/File:KnnClassification.svg



K -nearest neighbours (KNN)
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K -nearest neighbours (KNN)

Problems with KNN:

e Computational complexity: To classify one point, need to run through entire dataset
(issues when N >>)

e Distance functions can be inaccurate (need to make some assumptions)

e Curse of dimensionality (issues when D >>): Everything seems far away

Terminology:
e KNN is a non-parametric classification approach

e |t is an example of memory-based or instance-based learning
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Sepal width (cm)

K -nearest neighbours (KNN)

m setosa
e versicolour
¢ virginica

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sepal length (cm)

8.0



Sepal width (cm)

K -nearest neighbours (KNN)

setosa
versicolour
virginica

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sepal length (cm)

8.0



Classification

Naive Bayes

Herman Kamper

http://www.kamperh.com/



he Bayes classifier

If we wanted to follow a probabilistic approach, we could use the following prediction

model:
f(x;0) = argmax P(y = k|x)
k

To use this model, we need to know P(y = k|x). We can use Bayes' rule:

p(xly =k)P(y = k)
p(x)

Py =klx) =

Since p(x) is the same for all k£ and we are only interested in the max, we can throw away

the denominator:
Py = k|x) x p(x|y = k)P(y = k)

This equation is very general. To actually use it, we need to decide on forms for
p(x|y = k) and P(y = k) and then figure out how we will learn their parameters 6 from

the training data {(x(™), y(")11_ . Ply=kl%; 8) p(=ly=k, 9) . P(U:k:‘@_)
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Quadratic and linear discriminant analysis

For P(y = k) = m,, a common approach is to
simply count the number of training points

assigned to class k:

Tk =

We could decide that for each class we use

2.

o L™ = k)

n=1
N

p(xly = k;0) = N(x; puy,, i)

and then set p; and X to the MLE for each

class. This is called quadratic discriminant

analysis (QDA).

Q = {(/‘{.‘k. ) Zkygi‘

bl

dxbd

This could be problematic, though. If the
dimensionality D is high and we have few training
points IV, there might not be enough data to
estimate {(p, Xg)}H ,. Each Xy isa D x D
matrix, so there can be many parameters!

We could make the assumption that all classes
share the same covariance matrix 3 and then only
fit {p, }7-,, giving us more data to fit the single
3.. This is called linear discriminant analysis
(LDA).

The naive Bayes assumption goes even further!



(Gaussian) naive Bayes

In naive Bayes, we assume that each feature is independent, i.e. that each dimension of x
is independent:

D
p(xly = k;0) = || p(zaly = k; 6)
d=1
The naive Bayes assumption can be made for any distribution, not just Gaussians. For the
Gaussian case, it leads to

D
p(xly = k;0) = [ N(za; phd> 07.a)
d=1

where the set of parameters 0 are all the means and variances. This can easily be fit
using the MLE for each of the D univariate Gaussians for each of the K classes, i.e. we
will have to fit D - K univariate Gaussians.
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Generative and discriminative models

Generative models:
e Bayes classifier: P(y = k|x) x p(x|y = k)P(y = k)
e Choose forms for p(x|y = k) and P(y = k) and learn from data

e Referred to as generative, since we can generate data: first sample class from P(y)
and then sample data from p(x|y = sampled class)

e But often we aren't actually interested in generating data: we want to classify!

e And might be tricky to model p(x|y = k) for each class

Discriminative modaels:

e Just model P(y = k|x) directly!
e Use training data {(x(™), y(")}N_| to directly fit probability we are interested in



owards logistic regression
§Iomolo\ Lunction:

S (=)

For binary classification, i.e. y € {0,1}, we
could for instance use:

1

1+ e—W!'x

to model P(y = k|x). f
siav\o'io\ function

fx;w) =o(w'x) =




