Herman Kamper

http://www.kamperh.com/

From regression to classification:

- Regression: Predict scalar output $y \in \mathbb{R}$ given input \mathbf{x}
- ullet Classification: Predict categorical class label y given input ${f x}$

Examples:

- Disease diagnoses: Classifying whether a patient is healthy or not
- Text classification: Classifying documents according to topic
- Fault diagnoses: Is a photovoltaic system/antenna operating as expected or not?

Target output

- ullet Classification: Predict categorical class label y given input ${f x}$
- Data: In $\{(\mathbf{x}^{(n)},y^{(n)})\}_{n=1}^N$, the label $y^{(n)}$ should tell us which class $\mathbf{x}^{(n)}$ belongs to
- There is a number of ways to encode y numerically
- Binary classification: $y \in \{0,1\}$ or $y \in \{-1,1\}$
- Classification among K classes: $y \in \{1, 2, \dots, K\}$

Iris flower dataset

Iris dataset

K-nearest neighbours

Herman Kamper

http://www.kamperh.com/

Algorithm:

- ullet For a new test input ${f x}$, identify the K points in the training data closest to ${f x}$
- Predict the class of ${\bf x}$ as the label that occurs most often in the set ${\cal X}_K$ of closest points
- Can also get "soft" predictions, where the probability of ${\bf x}$ belonging to class k is given by:

$$P(y = k | \mathbf{x}) = \frac{1}{K} \sum_{n \in \mathcal{X}_{\mathbf{K}}} \mathbb{I}(y^{(n)} = k)$$

with \mathbb{I} the indicator function and \mathcal{X}_K the set of indices of the nearest neighbours

$$\overline{\mathbb{I}}(A) = \begin{cases} 1 & \text{if } A \text{ is true} \\ 0 & \text{if } A \text{ is false} \end{cases}$$

Choice of distance function:

- = \[\langle \text{(x(a) x(b))^2 + (x(2) x(2))^2 + ... + (x(2) x(3))^2 + ... + (x(2) x(3))^2 + ... + (x(2) x(3))^2 \]
 = \[\langle \text{(x(a) x(b))} \]
 - Cosine:

 Q is angle between $\frac{\pi}{2}$ $\frac{\pi}{2}$

Problems with KNN:

- Computational complexity: To classify one point, need to run through entire dataset (issues when $N\gg$)
- Distance functions can be inaccurate (need to make some assumptions)
- Curse of dimensionality (issues when $D \gg$): Everything seems far away

Terminology:

- KNN is a non-parametric classification approach
- It is an example of *memory-based* or *instance-based* learning

Iris dataset

Naive Bayes

Herman Kamper

http://www.kamperh.com/

The Bayes classifier

If we wanted to follow a probabilistic approach, we could use the following prediction model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \arg\max_{k} P(y = k|\mathbf{x})$$

To use this model, we need to know $P(y = k|\mathbf{x})$. We can use Bayes' rule:

$$P(y = k | \mathbf{x}) = \frac{p(\mathbf{x}|y = k)P(y = k)}{p(\mathbf{x})}$$

Since $p(\mathbf{x})$ is the same for all k and we are only interested in the max, we can throw away the denominator:

$$P(y = k|\mathbf{x}) \propto p(\mathbf{x}|y = k)P(y = k)$$

This equation is very general. To actually use it, we need to decide on forms for $p(\mathbf{x}|y=k)$ and P(y=k) and then figure out how we will learn their parameters $\boldsymbol{\theta}$ from the training data $\{(\mathbf{x}^{(n)},y^{(n)})\}_{n=1}^N$. P(y=k) \neq (\neq (y=k) \neq). P(y=k) \neq)

Bayes classifier: Intuitively P(y=k1 x) x p (x 1y=k). P(y=k) Need to fit P(y=k) and p(x/y=k) from the data. I.e., need P (y = x) P (y= 0) How would you choose these, intuitively? P (y=□) P (≈[4=×) p (= 1 y= 0) p (≈ 14=")

Quadratic and linear discriminant analysis

For $P(y=k)=\pi_k$, a common approach is to simply count the number of training points assigned to class k:

$$\hat{\pi}_k = \frac{\sum_{n=1}^N \mathbb{I}(y^{(n)} = k)}{N}$$

We could decide that for each class we use

$$p(\mathbf{x}|y=k;\boldsymbol{\theta}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

and then set μ_k and Σ_k to the MLE for each class. This is called *quadratic discriminant* analysis (QDA). $\Theta = \left\{ \left(\bigwedge_k , \sum_k \right) \right\}_{k=1}^K$

This could be problematic, though. If the dimensionality D is high and we have few training points N, there might not be enough data to estimate $\{(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}_{k=1}^K$. Each $\boldsymbol{\Sigma}_k$ is a $D \times D$ matrix, so there can be many parameters!

We could make the assumption that all classes share the same covariance matrix Σ and then only fit $\{\mu_k\}_{k=1}^K$, giving us more data to fit the single Σ . This is called *linear discriminant analysis* (LDA).

The naive Bayes assumption goes even further!

(Gaussian) naive Bayes

In naive Bayes, we assume that each feature is independent, i.e. that each dimension of ${\bf x}$ is independent:

$$p(\mathbf{x}|y=k;\boldsymbol{\theta}) = \prod_{d=1}^{D} p(x_d|y=k;\boldsymbol{\theta})$$

The naive Bayes assumption can be made for any distribution, not just Gaussians. For the Gaussian case, it leads to

$$p(\mathbf{x}|y=k;\boldsymbol{\theta}) = \prod_{d=1}^{D} \mathcal{N}(x_d; \mu_{k,d}, \sigma_{k,d}^2)$$

where the set of parameters θ are all the means and variances. This can easily be fit using the MLE for each of the D univariate Gaussians for each of the K classes, i.e. we will have to fit $D \cdot K$ univariate Gaussians.

Iris dataset

Gaussian Naive Bayes

Gaussian Naive Bayes

Generative vs discriminative

Herman Kamper

http://www.kamperh.com/

Generative and discriminative models

Generative models:

- Bayes classifier: $P(y = k | \mathbf{x}) \propto p(\mathbf{x} | y = k) P(y = k)$
- Choose forms for $p(\mathbf{x}|y=k)$ and P(y=k) and learn from data
- Referred to as generative, since we can generate data: first sample class from P(y) and then sample data from $p(\mathbf{x}|y=\text{sampled class})$
- But often we aren't actually interested in generating data: we want to classify!
- And might be tricky to model $p(\mathbf{x}|y=k)$ for each class

Discriminative models:

- Just model $P(y = k | \mathbf{x})$ directly!
- Use training data $\{(\mathbf{x}^{(n)},y^{(n)})\}_{n=1}^N$ to directly fit probability we are interested in

Towards logistic regression

For binary classification, i.e. $y \in \{0, 1\}$, we could for instance use:

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}}}$$
 to model $P(y = k | \mathbf{x})$. Signaid function

