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One-vs-rest classification

Strategy: Train three classifiers with y ∈ {0, 1) where each classifier
considers one class as the positive class and the others as negative.

We then get three classifiers:

f1(x; w1)
f2(x; w2)
f3(x; w3)

Final prediction:
arg max

k
fk(x; wk)
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One-vs-rest on iris dataset

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length (cm)

2.0

2.5

3.0

3.5

4.0

4.5

Se
pa

l w
id

th
 (c

m
)

setosa
versicolour
virginica

3



One-vs-rest on iris dataset
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Softmax regression
For binary logistic regression we had

f(x; w) = σ(w⊤x) = 1
1 + e−w⊤x

with y ∈ {0, 1).

We interpreted the output as P (y = 1|x; w), implying
P (y = 0|x; w) = 1 − f(x; w).

For the multiclass setting we now have y ∈ {1, 2, . . . , K}.

Idea: Instead of just outputting a single value for the positive class,
let us output a vector of probabilities for each class:

f(x; W) =



P (y = 1|x; W)

P (y = 2|x; W)
...

P (y = K|x; W)



Below we build up to a model that does this.

5



Each element in f(x; W) should be a “score” for how well input x
matches that class.

For input x, we set the score for class k to

w⊤
k x

But probabilities need to be positive. So we take the exponential:

ew⊤
k x

But probabilities need to sum to one. So we normalise:

P (y = k|x; W) = exp(w⊤
k x)∑K

j=1 exp(w⊤
j x)

This gives us the softmax regression model:
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Optimisation
We fit the model using maximum likelihood. This is equivalent to
minimising the negative log likelihood:

J(W) = − log L(W)

= −
N∑

n=1
log P (y(n)|x(n); W)

= −
N∑

n=1

K∑
k=1

I{y(n) = k} log exp(w⊤
k x(n))∑K

j=1 exp(w⊤
j x(n))

Derivatives:

∂J(W)
∂wk

= −
N∑

n=1

(
I{y(n) = k} − fk(x(n); W)

)
x(n)

Using these derivatives, we can minimise the loss using gradient
descent.
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Softmax regression on iris dataset
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Output representation
Sometimes it is convenient to represent the target output as a one-hot
vector :

y(n) =
[
0 0 . . . 0 1 0 . . . 0

]⊤

This one-hot vector has a one in the position y
(n)
k if x(n) is of class k,

with zeros everywhere else. This is a convenient representation for the
target output, since it allows us to vectorise algorithms.

We can then write the loss and gradient as:

J(W) = −
N∑

n=1

K∑
k=1

y
(n)
k log exp(w⊤

k x(n))∑K
j=1 exp(w⊤

j x(n))
∂J(W)

∂wk

= −
N∑

n=1

(
y

(n)
k − fk(x(n); W)

)
x(n)

This is mathematically exactly equivalent to using the versions with
the indicator function.

(We will look at one-hot encodings for categorical input later.)
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Relationship between softmax and binary
logistic regression

For the special case that K = 2, you can show that softmax regression
reduces to:

f(x; W) =


1

1+exp((w1−w2)⊤x)
1 − 1

1+exp((w1−w2)⊤x)


So the model only depends on w2 − w1, a single vector.

We can replace this vector with w′ = w2 − w1, and only need to fit
w′.

This is equivalent to binary logistic regression.
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Videos covered in this note
• Logistic regression 5.1: Multiclass - One-vs-rest classification (5

min)
• Logistic regression 5.2: Multiclass - Softmax regression (15 min)

Reading
• ISLR 4.3.5
• UFLDL Tutorial: Softmax Regression
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https://youtu.be/EYXSve6T5BU&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://youtu.be/hYBwBmojXoU&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
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